
An XML-based Component Architecture for
Personalized Adaptive Web Applications

Zoltán Fiala, Michael Hinz, Frank Wehner

Dresden University of Technology

Heinz-Nixdorf Endowed Chair for Multimedia Technology
Mommsenstr. 24
D-01062 Dresden

{zoltan.fiala, michael.hinz, frank.wehner}@inf.tu-dresden.de

Abstract: Developing personalized applications for the ubiquitous Web assumes
to create content that can be automatically adapted to both different presentation
platforms and user preferences. To answer this need, the project AMACONT
[Am03] recently introduced a component-based XML document format. It enables
to compose personalized Web applications by the aggregation and linkage of fine-
granular document components from different abstraction levels. This paper aims
at a detailed description of personalization issues regarding both content and de-
vice adaptation. XML technologies are used to express device profiles and user
models, as well as to define adaptive behavior and layout of components in a ge-
neric way. Finally, the developed pipeline-based document generator for dynami-
cally transforming adaptable component structures to different Web output formats
is explained.

1 Introduction

Today’s Web is quickly evolving towards an interactive medium that offers up-to-date
information for a rapidly growing audience characterized by a large diversity of interests
and client devices. However, existing document formats (such as HTML, cHTML or
WML) are hardly suitable for engineering personalized ubiquitous Web applications.
The lacking separation of content, layout and structure prevents to uniformly create and
update content for different preferences and platforms. Furthermore, no mechanisms for
describing the adaptive behavior of content pieces in a generic way are provided.
Recently, different approaches for modeling and engineering adaptive hypermedia and
Web systems have emerged. Reference models aiming at finding common abstractions
to hypermedia systems, like Dexter [HS94] or the model of Tochtermann [To94] have
been extended towards adaptation e.g. by AHAM [DHW99] or the Munich Reference
Model [KW02]. Significant research has been done on design and process models cover-
ing hypermedia development phases, too. Approved design principles like OOHDM
[SRB96] or RMM [ISB95] have been enhanced with personalization issues in [RSG01]
or by Hera [FHV02]. However, all these approaches focus on the conceptual modeling
and design of hypermedia applications, not supporting the flexible reuse of adaptable
implementation artefacts.

There exist only a few approaches towards reusing implementation entities in hyperme-
dia development. The WebComposition Markup Language [GSG00] enables the compo-
nent-based development of Web applications. Westbomke [WD02] proposes a formal
XML-grammar for the implementation and presentation of platform-independent struc-
tured hypermedia documents by formalizing the concepts of Tochtermann's model. Still,
adaptation to device capabilities and changing user preferences is not a central aspect of
these approaches.
In [WS01] an approach called „Intensional Hypertext“ is introduced. The „Intensional
Markup Language“ (IML) is a proprietary extension of HTML containing control struc-
tures for describing adaptive behavior on the basis of the chosen URL and user input.
However, there is no support for output formats other than HTML.
To fill this gap, the project AMACONT [Am03] recently introduced a component-based
document format for personalized ubiquitous Web presentations [Fi03]. It focuses not on
the conceptual design of Web applications, but on the challenge to reuse adaptable im-
plementation artefacts. In this paper a detailed overview of personalization issues is
given. XML technologies are used to describe device capabilities and user preferences,
as well as to define the adaptive behavior and layout of components. Finally, the devel-
oped pipeline-based document generator is described.

2 The Document Model

The component-based document format [Fi03] allows to build device-independent Web
applications by aggregation and linkage of configurable document components. These
are documents or document fragments, instances of an XML-grammar representing
adaptable content on different abstraction levels (see Figure 1). Components’ interfaces
are described by metadata specifying their properties and adaptive behavior. The format
was defined by XML Schema.
The lowest level introduces media components which encapsulate concrete media assets.
These comprise text, structured text (e.g. HTML), images, sound, video, Java applets
and may be extended arbitrarily. Beside technical properties expressed by MPEG-7
descriptors, additional content management information is provided, too.
On the second level media components belonging together semantically - e.g. an image
with textual description – are combined to so called content units. Defining such collec-
tions is a key factor of reuse. The spatial adjustment of contained media components is
described by client-independent layout properties abstracting from the exact resolution
and presentation style of the current display (see Section 3.2).
Thirdly, document components are specified as parts of Web presentations playing a well
defined semantic role (e.g. a news column, a product presentation or even a Web site).
They can either reference content units, or aggregate other document components. The
resulting hierarchy describing the logical structure of a Web site is strongly dependent
from the application context. Again, the spatial adjustment of subcomponents is de-
scribed in a client-independent way.

Finally, the orthogonal hyperlink view defines links spanned over all component levels.
Uni- and bidirectional typed hyperlinks based on the standards XLink, XPath and
XPointer are supported.

E-Learning Course

Media
Components

Document
Components

Chapter 2

Content Unit
Image with

textual
explanation

Content Unit
Components

Hyperlinks

Content Unit
Image with

audio
explanation

Content Unit

...

Overview

Chapter 1

Fact

Example

Text
Text

Text
Video

Text
Style-
sheetText

Image
Text

Media
...

Introduction

Hyperlink
Aggregation

Figure 1: The Document Model

3 Personalization Issues

The document format supports personalization by encapsulating adaptive behavior in
components on different abstraction levels. Firstly, adaptation is required on the level of
media components in order to consider various client capabilities or other technical pref-
erences (e.g. bandwidth, color depth, etc.) by providing alternative media instances with
varying quality. Secondly, on the level of content units the number, type and arrange-
ment of inserted media components can be adjusted. Consider the case of two online-
shop customers, one of them preferring detailed textual descriptions, the other visual
information. The presentation for the first user might include content units containing
text objects, for the other one rather images or videos. Thirdly, personalization of docu-
ment components concerns the adaptation of the whole component hierarchy, which
results in different subcomponent trees for different user preferences and/or device capa-
bilities. Finally, adapting hyperlinks enables personalized navigation structures within
the generated Web presentation.

3.1 Describing Adaptive Behavior

In order to describe adaptive behavior in a generic way, each component may include a
number of variants. As an example, the definition of an image component might include
two variations for color and monochrome displays. Similarly, the number, structure,
arrangement and linking of subcomponents within a document component can also vary
depending on device capabilities or user preferences. The decision, which alternative is
selected, is made during document generation by an XSLT stylesheet according to a
certain selection method which is described in the component’s header. Such selection
methods are chosen by component developers at authoring time and can represent arbi-
trary complex conditional expressions parameterized by user model parameters. This
separation of describing variants (in the component body) and adaptation logic (in the
component header) allows reusing a given component in different adaptation scenarios.
The XML code below demonstrates the definition of a document component’s variants
and a selection method. In a Web presentation offering TV programs, different content
depending on the user’s age is presented.

<AmaDocumentComponent name="TVProgram">
 <MetaInformation>
 ...
 </MetaInformation>
 <Variants>
 <Variant name="Adult_Program">
 ...
 </Variant>
 <Variant name="Child_Program">
 ...
 </Variant>
 </Variants>
</AmaDocumentComponent>

<AdaptiveProperties>
 <If>
 <Expr operator=”greaterThan”>
 <UserParam>
 UserAge
 </UserParam>
 <Const>18</Const>
 </Expr>
 <Then res="Adult_Program"/>
 <Else res="Child_Program"/>
 </If>
<AdaptiveProperties>

Table 1: Defining component variants (left) and selection methods (right)

The processing XSLT style sheet substitutes the integer variable “User.Age” by its value
from the current user model (see Section 3.3), performs the selection method and deter-
mines the proper variant of the “TVProgram” component. As this variant might also
have varying subcomponents, the style sheet works recursively. The XML-grammar for
selection methods allows the declaration of user model parameters, constants, variables
and operators, as well as complex conditional expressions of arbitrary depth. The proc-
essing XSLT stylesheets acts as an interpreter for this “selection method language”.

3.2 Automatic Layout Adaptation

Defining selection rules for component variants is an effective tool for content and link
adaptation, but it requires to involve the author. A different issue is the visual adjustment

of component hierarchies according to graphical capabilities of varying end devices.
This can be mostly done automatically, without additional authoring support.
As described in Section 2, the document format enables to describe the spatial adjust-
ment of subcomponents within their container components by client-independent layout
properties. Inspired by the layout manager mechanism of the Java language (AWT and
Swing), these properties describe a size- and client-independent layout allowing to ab-
stract from the exact resolution of the display or the browser’s window. The exact ren-
dering of media objects is done by XSLT stylesheets transforming these abstract layout
descriptions into concrete output formats. At current time four layout managers: Border-
Layout, BoxLayout, OverlayLayout and GridLayout can be defined, and three XSLT
stylesheets for XHTML, cHTML and WML output were realized. Figure 2 presents a
component’s XML code containing abstract layout properties (marked gray), as well as
the result of the automatic rendering process. Note that layout managers of a component
reference its subcomponents, which may also have variants according to certain adapta-
tion aspects. The combination of author-driven content adjustment and automatic layout
adaptation techniques in the document generation process will be described in Section 4.

<aco:AmaSetComponent ocumentComponent ar_prese layer name="D " ="c
 < >< ><aco:MetaInformation amet:LayoutProperties alay:LayoutManager>
 < > alay:OverlayLayout
 < ="0" ="0">title</alay:ComponentRef alay:Componen pos_x pos_y t
 < ="0" ="10%">content</alay:ComponentRef alay:Co pos_x pos_y m
 </ > alay:OverlayLayout
 </ ></ ></alay:LayoutManager amet:LayoutProperties aco:MetaInformation
 < > aco:SubComponents
 < ="DocumentComponent" ="title"aco:AmaSetComponent layer name >
 <!-- ... -->
 </ > aco:AmaSetComponent
 < ="DocumentComponent" ="contaco:AmaSetComponent layer name e
 < >< ><aco:MetaInformation amet:LayoutProperties alay:LayoutMana
 < ="xAxis" ="30"> alay:BoxLayout axis space
 < ="50%">left_content</alay:ComponentRef alay:Comp ratio o
 < ="50%">right_content</alay:ComponentRef alay:Com ratio p
 </ > alay:BoxLayout
 </ ></ ></alay:LayoutManager amet:LayoutProperties aco:MetaInform
 < > aco:SubComponents
 < ="DocumentComponent" =aco:AmaSetComponent layer name
 < >< ><aco:MetaInformation amet:LayoutProperties alay:Layou
 < ="yAxis" ="30"> alay:BoxLayout axis space
 < >allgemein</alay:ComponentRef alay:ComponentRef>
 < >technik</ > alay:ComponentRef alay:ComponentRef
 </ > alay:BoxLayout
 </ ></ ></alay:LayoutManager amet:LayoutProperties aco:Meta
 < > aco:SubComponents
 < ="ContentUnit" ="genaco:AmaListComponent layer name
 <!-- ... -->
 </ > aco:AmaListComponent
 < ="ContentUnit" ="tecaco:AmaListComponent layer name h
 <!-- ... -->
 </ > aco:AmaListComponent
 </ > aco:SubComponents
 </ > aco:AmaSetComponent
 < ="DocumentComponent" =aco:AmaSetComponent layer name
 <!-- ... -->

Figure 2: Adapting Layout to Different Device Formats

3.3 The User Model

The adaptation of components during document generation happens according to an
XML-based user model. This contains information on user preferences and properties,
user interactions and technical client capabilities (see Figure 3).

Each part of the user model relies on CC/PP (Composite Capability/Preference Profiles),
an RDF grammar for describing device capabilities and user preferences in a standard-
ized way [Kl02]. However, as being a general grammar, CC/PP makes no assumptions
on concrete resource characteristics. Though a standard called WAP User Agent Profile
(UAProf [Wi01]) providing a common vocabulary for WAP devices has been defined on
the basis of CC/PP recently, it can not sufficiently describe alternative devices, like e.g.
PDAs or TabletPCs. Thus, in order to support a larger diversity of end devices a new
profile in the style of UAProf was defined and integrated in the user model (Figure 3c).

User model

User
Preferences

and Properties

Technical
Device

Capabilities

User
Interactions

a,

b,

c,

<UserModel>
 <Description ID="UserProfile">
 <Description ID="UserProperties">
 ...
 <Description ID="General">
 <Name>Steven Test</Name>
 <UserAge>21</UserAge>
 ...
 </Description>
 <Description ID="UserInteraction">
 <Events>
 ...
 <component id="MainText" type="TogTextComp">
 <userEvent name="printed" time="0304162030"/>
 ...
 </Description>
 </Description>
 <Description ID="DeviceProfile">
 <Description ID="SoftwarePlatform">...</Description>
 <Description ID="HardwarePlatform">...</Description>
 <Description ID="NetworkCharacteristics">
 … <AverageBandwith>54000</ AverageBandwith > …
 </Description>
</UserModel>

Figure 3: User Model Structure

In addition, another CC/PP grammar for describing user profiles in a generic way was
developed. Firstly, it allows to declare user preferences and properties (Figure 3a). Be-
side a set of general user properties, arbitrary extensions are allowed. Secondly, the
grammar also enables to store past user interactions in the form of events related to com-
ponents (Figure 3b). As an example, the corresponding XML fragment above describes
that the user has printed out some text represented by the component called “MainText”
via his Web browser.
History lists describing user interactions provide a useful mechanism for implementing
dynamic personalization, i.e. personalization within the generated Web presentation
according to changing user preferences. By evaluating interactions (e.g. visiting pages,
following links, starting videos, interrupting downloads, etc.) suggestions on the current
user’s preferences and knowledge can be made and parts of the user model describing
user preferences can be updated or specialized (see the upper region of Figure 4). In a
developed prototype application for product presentation this specialization is performed

by the incremental learning algorithm CDL4 [Sh96]. The algorithm was approved as
very useful in adaptive multimedia product presentations in an earlier project of the
authors’ research group [JM98].
In order to acquire most user model parameters automatically (i.e. without explicitly
asking the user), client-side mechanisms based on JavaScript routines or MIDlets (for
J2ME capable devices) were developed. These allow to gather information on client
capabilities and user interactions, as well as to send it to the server according to the
above mentioned CC/PP-based profiles. These client-side “watching” routines are auto-
matically inserted and configured at document generation.

4 The Document Generator

Document generation is based on a stepwise pipeline concept (Figure 4). For each user
request, a complex document encapsulating all possibilities concerning its content, lay-
out, and structure is retrieved from a component repository. According to the user model,
it is subdued to a series of XSLT transforms, each considering a certain adaptation as-
pect by the configuration and selection of component variants (see Section 3.1).

 </alay:LayoutManager>
 </ amet:LayoutProperties>
</ aco:MetaInformation>
<aco:Variants>
 ="va 1<aco:Variant riant name " la
 <aco:MetaInformation>
 <amet:LayoutPropertie
 <alay:LayoutMana
 <alay:Overlay
 <alay:Co
 <alay:Co
 </alay:Overla
 </alay:LayoutMan
 </amet:LayoutPropertie
 </ aco:MetaInformation>
 <aco:SubComponents>
 <aco:AmaImageCompo
 <aco:MetaInforma
 <amet:MetaD
 <amet:MetaD
 Ope
 </amet:MetaD
 </aco:MetaInforma

Pipeline-based Document Generation

Input Doc.
contains all
variants and
adaptation
options

Transform
adaptation
to a certain
client class

Rendering
XHTML
cHTML
WML

Transform
adaptation
according to
user
preferences

Transform
adaptation
to specific
technical
capabilities

User model

User Properties
and Preferences

Component
Repository

Request

Technical
Client Capabilities

User Modeling
User

Interactions

CDL 4

initiates updates

Step 1 Step 2 Step 3

Figure 4: Pipeline-based Document Generation

Instead of evaluating all adaptation rules “at once”, the generation process can be di-
vided into more steps in order to reuse partially adapted documents for similar requests.
Figure 4 shows a possible scenario with three steps, namely adaptation to a certain client
class (e.g. PDA, cell phone or desktop browser), then to semantic user preferences (in-
terests, knowledge level, media preferences, etc.) and finally to specific technical capa-
bilities (e.g. bandwidth, display resolution). Though the three XSLT stylesheets are iden-
tical, they are parameterized differently, so that each of them processes only specific
decision rules. As an example, the first one evaluates only rules referencing variables
describing the client class and leaves other rules unprocessed. As an example, when the

same document is requested by two PDA users, the output of this transform can be re-
used, even if those users have different preferences concerning their interests or knowl-
edge level.
After all adaptation rules have been evaluated and the final static component hierarchy –
without variants – has been determined, a Web document in a specific output format
(XHTML, cHTML, WML etc.) is generated. The concrete rendering of components
happens automatically (see Section 3.2). The document generator was realized based on
the publishing framework Cocoon [Co03].

5 Conclusion and Future Work

In this paper a detailed overview of personalization and adaptation issues provided by
the XML-based component architecture of the project AMACONT [Am03] was given.
The component-based document format supports the flexible reuse of fine-granular
adaptive Web implementation units. It provides generic mechanisms to describe the
adaptive behavior of components on different abstraction levels as well as their adaptive
layout in a client-independent way. The modular document generator architecture en-
ables the stepwise transformation of component structures to different output formats
according to an XML-based user model.
The concepts described in this paper have been prototypically implemented in a proto-
type for product presentations. Ongoing work concentrates on the authoring process of
component-based Web applications. Existing design and process models for hypermedia
application development are analyzed regarding their extensibility for adaptive compo-
nent-based Web sites. Furthermore, a component repository and a modular authoring
tool for creating, storing, retrieving, configuring, and publishing adaptive content com-
ponents will be designed and implemented.

References

[Am03] AMACONT Project Homepage

http://www-mmt.inf.tu-dresden.de/english/Projekte/AMACONT/

[Co03] The Apache Cocoon Project Homepage, http://cocoon.apache.org/

[DHW99]De Bra, P., Houben, G., Wu, H.: “AHAM: A Dexter-based Reference Model for Adap-

tive Hypermedia”, Hypertext ’99, Darmstadt (1999)

[Fi03] Fiala, Z., Hinz, M., Meißner, K., Wehner, F.: “A Component-based Approach for Adap-

tive, Dynamic Web Documents”; WWW2003, Budapest 2003
[FHV02] Frasincar, F., Houben, G., Vdovjak, R.: “Specification Framework for Engineering

Adaptive Web Applications”, WWW11, 2002

http://www-mmt.inf.tu-dresden.de/english/Projekte/AMACONT/
http://cocoon.apache.org/

[GSG00] Gaedke, M., Segor, C., Gellersen, H.-W.: “WCML: Paving the Way for Reuse in Object-
Oriented Web Engineering”, SAC2000, 2000

[HS94] Halasz, F., Schwartz, M.: “The Dexter Hypertext Reference Model”, Comm. of the

ACM, vol. 37, pp. 30-39, 1994

[ISB95] Isakowitz, T., Stohr, E.A., Balasubramanian, P.: “RMM: A Methodology for Structured

Hypermedia Design”, Comm. of the ACM, 1995

[JM98] Jörding, T., Meissner, K.: “Intelligent Multimedia Presentations in the Web: Fun without

Annoyance”, WWW7, Brisbane, 1998

[Kl02] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H.: “Composite Capability/Preference

Profiles (CC/PP): Structure and Vocabularies”, W3C Working Draft, 2002.

[KW02] Koch, N., Wirsing, M.: “The Munich Reference Model for Adaptive Hypermedia Appli-

cations”, Second International Conference on Adaptive Hypermedia and Adaptive Web-
based Systems. Springer Verlag, May 2002

[RSG01] Rossi, G., Schwabe, D., Guimaraes R.M.; “Designing Personalized Web Applications”,

WWW10, Hong Kong (2001)

[SRB96] Schwabe, D., Rossi, G., Barbosa, S.D.J.: “Systematic Hypermedia Application Design

with OOHDM”, UK Conference on Hypertext, 1996

[Sh96] Shen, W.M.: “An efficient Algorithm for Incremental Learning of Decision Lists”,

Technical Report, USC-ISI-96-012, Information Sciences Institute, University of South-
ern California (1996)

[To94] Tochtermann, K.: “Ein Modell für Hypermedia”, PhD Thesis, Universität Dortmund,

Fachbereich Informatik, Lehrstuhl 1 (1994)

[Wi01] Wireless Application Group: “User Agent Profile Specification“, WAP Forum (2001)

[WD02] Westbomke, J., Dittrich, G.: “Towards an XML-based Implementation of Structured

Hypermedia Documents”, Journal of Universal Computer Science, Vol. 8/10 (2002)

[WS01] Wadge, W., Schraefel, M.: “A Complementary Approach for Adaptive and Adaptable

Hypermedia: Intensional Hypertext” In Hypermedia: Openness, Structural Awareness,
and Adaptivity - International Workshop OHS-7, SC-3, and AH-3, Aarhus, Denmark,
2001.

	Introduction
	The Document Model
	Personalization Issues
	Describing Adaptive Behavior
	Automatic Layout Adaptation
	The User Model

	The Document Generator
	Conclusion and Future Work
	References

