
Chapter 4

A Concern-Oriented Component Model for
Adaptive Web Applications

“If we knew what it was we were doing, it would not be called research, would it?”1

The previous chapter reviewed and compared existing Web engineering solutions aimed
at the development of adaptive Web-based systems. It investigated both model-driven ap-
proaches addressing the conceptual design and high-level specification of Web applications,
as well as component-oriented and document-centric solutions primarily focusing on their
presentation and implementation aspects. It was pointed out that component-based reuse is
a crucial issue of Web engineering. Still, there is lacking support for the efficient creation
of adaptive multimedia Web presentations from reusable and configurable implementation
entities.

To fill this gap, this chapter presents a concern-oriented component model2 for adaptive
dynamic Web applications. The term concert-oriented denotes its explicit support for the
clear separation of concerns involved in a Web application, i.e. it enables to compose adap-
tive Web presentations by the aggregation and linkage of reusable document components that
encapsulate different application concerns such as content, structure, navigation, semantics,
presentation (as well as their corresponding adaptation issues) on different abstraction lev-
els. The resulting document component structures can be automatically translated to Web
presentations that are adapted to a specific user, device, output format, or other context
information.

The remainder of this chapter is structured as follows. First, in Section 4.1, the document-
centric component concept is discussed, and a number of requirements towards a document
model for adaptive Web presentations are mentioned. Based on these requirements, the fol-
lowing sections (4.2 to 4.4) present the component-based document model and its XML-based
description language in detail. The different abstraction levels of document components,
their support for adaptation, as well as the concept of document component templates are
explained by examples. In Section 4.5 a pipeline-based document generator aimed at the
on-the-fly publishing of component-based adaptive Web applications is presented. Finally,
selected benefits of the proposed model are discussed in Section 4.6.

1Albert Einstein (1879 - 1955)
2The component model was developed within the scope of the AMACONT project and is also often referred

to as the AMACONT component model.The thesis presents the author’s contributions to the model, based
on requirements towards the efficient authoring of adaptive Web applications from reusable components.

67

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

4.1 Declarative Document Components

Szypersky defines in [Szyperski 1998] the notion of a software component as follows:

Definition 4.1 (Software component) A software component is a unit of composition
with contextually specified interfaces and explicit context dependencies only. A software com-
ponent can be deployed independently and is subject to third-party composition [Szyperski 1998].

This original definition considers a software component as a binary unit of composition
that is typically based on an imperative implementation. Still, in recent years a number of
declarative component approaches have emerged, aiming at describing not only the interfaces
and properties, but even the functionality of reusable implementation entities in a declara-
tive human-readable form [Dachselt 2004, Aßmann 2005]. This shift from the traditional
program-centric to a document-centric application development paradigm has been especially
characteristic for the World Wide Web. As prominent examples well-established standards
such as SMIL (Synchronized Multimedia Integration Language [Bulterman et al. 2005]) or
SVG (Scalable Vector Graphics [Ferraiolo and Jackson 2003]) can be mentioned, that facil-
itate to create complex Web and multimedia applications on top of XML-based declarative
document descriptions. Furthermore, as discussed in Section 3.2, there already exists a num-
ber of approaches (WCML, CONTIGRA, CHAMELEON) that explicitly focus on reusing
declarative Web implementation entities in a component-wise manner.

The component-based document model presented in this chapter was inspired by the pre-
viously discussed approaches WebComposition (WCML), CONTIGRA, and CHAMELEON.
Adopting their document-centric component concept, it supports the development of person-
alized ubiquitous Web presentations from declarative reusable implementation entities called
document components [Fiala et al. 2003a, Fiala et al. 2003b].

Document components are XML documents, instances of a specific XML-grammar de-
scribing adaptive Web content. They can be defined on different abstraction levels, each
representing a separate application concern (e.g. content, structure, semantics, navigation,
presentation) involved in a Web presentation. Document components are unequivocally iden-
tified by a unique identifier and further described by appropriate metadata. Acting as their
interface definition, this metadata specifies their properties (such as their structure, layout)
as well as their adaptive behavior. Web sites are constructed by configuring, aggregating,
and interlinking components to complex component structures. During document generation,
these abstract document structures are dynamically translated into Web pages in a concrete
output format and are automatically adapted to the current usage context.

Even though document fragments are no (binary) software components according to the
above mentioned software engineering definition of Szyperski, note that they show a lot of
similarities to the classic component concept. They are system independent and reusable
units, representing a certain functionality that can be combined to complex applications.
Furthermore, they provide a clearly defined interface described by specific metadata, allowing
for configuration and aggregation on higher component levels3.

While the specifics of the component model and its XML-based description language are
described in detail in the subsequent sections, the following list comprises the most important

3Though being different from the component definition of Szypersky, note that the concept of document
components also corresponds to the notion of components of a hypermedia system as defined by the Dexter
reference model [Halasz and Schwartz 1994].

68 c© Copyright TU Dresden, Zoltán Fiala

4.2. A Component-based Document Model and its XML Description Language

requirements that were considered during their design. These requirements were derived from
the previously discussed shortcoming of existing solutions (see Section 3.2.10) as well as the
main goal of the thesis: the efficient component-based authoring of adaptive Web applications
from reusable implementation artefacts4.

1. Rigorous separation of different concerns involved in a Web presentation, such
as content, structure, navigation, layout, and adaptation.

2. Reusability of (parts) of Web presentations on both different abstraction levels and of
different granularity (i.e. from fine-granular atomic resources to coarse-grained complex
Web document structures).

3. Composability of reusable document parts to aggregates (composites) that again act
as reusable units and can be subject to further composition.

4. Ease of configuration and adjustment of parts of Web presentations of different
granularity through well-defined interfaces described by appropriate descriptive meta-
data.

5. Inherent adaptation support by built-in language constructs allowing to refer to
user and context model parameters. Provision of generic facilities for defining condi-
tional alternatives (of different concerns such as content, structure, navigation, presen-
tation) depending on the actual client device, user preferences, and the entire usage
context.

6. Platform and device independence by abstraction from concrete implementation
platforms, client devices, Web browsers, and specific Web output formats.

7. Support for media integration allowing to incorporate both existing and future
media and internet document formats.

8. Support for data-driven Web presentations based on component templates that
can be extended (i.e. “filled”) with dynamically retrieved data at run-time.

9. Interoperability with existing internet standards by extensive usage of approved XML
technologies.

10. Extensibility and flexibility support through modularity as well as well-defined
metadata interfaces.

4.2 A Component-based Document Model and its XML De-
scription Language

As discussed above, the proposed document model is based on the notion of declarative doc-
ument components. These are instances of a specific XML-grammar that represent different
application and adaptation concerns on various abstraction levels and can thus be configured,
aggregated, and interlinked to complex adaptive Web presentations.

In order to support platform independence and interoperability, the document format
was specified based on XML-technology. It is defined by a set of XML Schema documents

4Note that these requirements also served as the basis for comparing existing component-based and
document-oriented approaches in Section 3.2.10

c© Copyright TU Dresden, Zoltán Fiala 69

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

[Fallside and Walmsley 2004], each specifying a separate aspect of the document model, such
as composition, metadata, adaptation, presentation, etc. Note that XML Schema allows
for more powerful definitions than a DTD by supporting namespaces, type safety, reuse of
type definitions, more exact expressions of cardinality, self-documentation as well as type
inheritance.

The document model allows to define components on different abstraction levels (also re-
ferred to as component levels), each responsible for a given application concern. In Figure 4.1
the corresponding level-based architecture is illustrated. It is constituted of media compo-
nents, content unit components, document components, and the hyperlink view. Based on a
number of representative examples, the following sections introduce each component level in
more detail.

CompanyHomepage

Media
Components

Document
Components

Profile

Content Unit
Image with

textual

explanation

Content Unit
Components

Hyperlinks

Content Unit
Image with

audio

explanation

Content Unit

...

Contact

ProductList

Introduction

History

Text
Text

Text
Video

Text
Style-
sheetText

Image
Text
Media
...

Product

Hyperlink

Aggregation

Figure 4.1: A concern-oriented component model for adaptive Web sites [Fiala et al. 2003a]

4.2.1 Media Components

On the lowest level of the component hierarchy there are media components that encapsulate
particular media assets by describing them with specific XML-based metadata. The set of
supported media assets comprises text, toggle-text, structured text (e.g. HTML or XML code
fragments), images, sound, video, Java applets, Flash and Director presentations, but may
be extended arbitrarily. Dynamically created media components (e.g. HTML fragments or
pictures generated on the fly) are also supported, provided that the corresponding metadata
is delivered, as well. Furthermore, even whole documents (such as HTML pages) might be
wrapped to media components in order to optimize page generation and support flexible
authoring.

As an example, the code snippet in Listing 4.1 describes a simple image component. It is
unequivocally identified by its name attribute which is unique for all components. The layer
attribute (see line 1) dictates that it is a component from the level of media components.

70 c© Copyright TU Dresden, Zoltán Fiala

4.2. A Component-based Document Model and its XML Description Language

The namespace aco identifies the XML schema definition AmaComponent.xsd which specifies
the different levels, types as well as the composition hierarchy of components. Similarly, the
namespace amet identifies the XML schema document AmaMetaInformation.xsd aimed at
defining the possible metadata attributes of components. The metadata attributes of media
components (aimed at describing their technical properties) were inspired by the appropriate
descriptors of the MPEG-7 standard [Manjunath et al. 2002]. In the presented example they
describe the image object’s size dimensions (width and height) as well as its source location.

1 <aco:AmaImageComponent name="myImage" layer="Media">
2 <aco:MetaInformation>
3 <amet:ImageMetaData>
4 <amet:source>images/myimage.jpg</amet:source>
5 <amet:width>500</amet:width>
6 <amet:height>300</amet:height>
7 </amet:ImageMetaData>
8 </aco:MetaInformation>
9 </aco:AmaImageComponent>

Listing 4.1: Simple media component example

In order to support for form-based user interactions, the component-based document for-
mat allows to define Web form elements (such as input fields, select lists, check boxes, etc.)
as media components [Hoja 2005]. This can be done either by using a structured text com-
ponent that contains a form description in a specific Web output format (e.g. HTML) or by
using a dedicated XForms component encapsulating a form description based on the XForms
standard [Dubinko 2004]. By separating the data model, the behavior and the presentation
aspects of Web forms, XForms allows for the specification of interaction elements in a device
independent way.

4.2.2 Content Unit Components

On the second component level, media components are grouped to so-called content units.
The purpose of such groupings is the explicit combination of media elements that belong
together concerning their content5 and thus should not be handled separately. For example,
an image with its appropriate textual description can constitute a content unit. Further
predefined content unit types are audio component with text component or collection of me-
dia components, but arbitrary extensions are supported. Note that the definition of such
collections of media objects is a key factor of component reuse.

As an example, the code snippet in Listing 4.2 illustrates a simple content unit containing
an image and a text component (both from the media component layer). Whereas in this case
these subcomponents are “physically” aggregated to a content unit (see the SubComponents
tag in line 5), note that it is also possible to include subcomponents by reference from another
XML document. The latter mechanism allows to efficiently reuse components in different
composition scenarios.

Since the media components constituting a content unit belong together, they also have
to be presented together in a Web presentation. Therefore, appropriate metadata describing
their layout, i.e. their relative spatial arrangement on the generated hypermedia pages is
needed. For this purpose content unit components contain additional layout descriptions (as
part of their own meta data information). Inspired by the layout manager mechanism of

5e.g. in order to represent a given concept of an application domain

c© Copyright TU Dresden, Zoltán Fiala 71

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <aco:AmaImageTextComponent name="myUnit" layer="ContentUnit">
2 <aco:MetaInformation>
3 ...
4 </aco:MetaInformation>
5 <aco:SubComponents>
6 <aco:AmaTextComponent name="myText" layer="Media">
7 ...
8 </aco:AmaTextComponent>
9 <aco:AmaImageComponent name="myImage" layer="Media">

10 ...
11 </aco:AmaTextComponent>
12 </aco:SubComponents>
13 </aco:AmaImageTextComponent>

Listing 4.2: Simple content unit example

the Java language, these properties describe a size- and client-independent layout allowing
to abstract from the exact resolution of the display or the browser’s window. A detailed
description of these layout descriptors will be given in Section 4.3.2.

4.2.3 Document Components

The uppermost component level contains so-called document components. These are mean-
ingful presentation units of a Web application that typically play a certain semantic role,
such as a news column, a product presentation, a navigation bar or even a whole Web page.
Take for example a document component bearing the semantic role “company product”. It
could aggregate (and thus be represented by) the content unit from Listing 4.2 that again
contains an image component and a text component.

Document components can not only contain content units, they can also aggregate other
document components. This aggregation results in an arbitrary deep hierarchy of document
components which describes the logical structure of a component-based Web document. The
root component (element) of a component-based adaptive Web document has to be always
a component from the document component level. Such a top-level document component
contains all the information to be shown on the user’s display at a particular moment. Ac-
cording to the component hierarchy example depicted in Figure 4.1, Listing 4.3 demonstrates
the corresponding aggregation of components6.

The document components constituting a Web presentation typically portray some mean-
ingful concepts that are represented by (a set of) content units or aggregated document
components. Still, the component-based document format does not prescribe to explicitly
specify the semantics of document components by unequivocally assigning them to parts (i.e.
concepts or attributes) of a specific conceptual model or domain ontology. The component
hierarchy of a Web page is specified by component authors in the authoring process which
will be described in detail in Chapter 5. There it will be also shown how component-based
Web applications presenting information on a well-defined application domain can be sys-
tematically developed.

In analogy to content units, the presentation of document components on a Web page is
specified by layout properties defining the spatial adjustment of their aggregated document

6Similar to content unit components, document components can not only “physically” contain their sub-
components (as aggregated XML subelements), they can also include subcomponents contained in separate
XML documents by reference.

72 c© Copyright TU Dresden, Zoltán Fiala

4.2. A Component-based Document Model and its XML Description Language

1 <aco:AmaCompanyHomepageComponent name="Company" layer="DocumentComponent">
2 <aco:SubComponents>
3 <aco:AmaProductListComponent name="ProdList" layer="DocumentComponent">
4 <aco:SubComponents>
5 ...
6 <aco:AmaProductComponent name="Product" ...>
7 <aco:SubComponents>
8 <aco:AmaImageTextComponent ... layer="ContentUnit">
9 <aco:SubComponents>

10 <aco:AmaImageComponent name="myImage" layer="Media">
11 ...
12 </aco:AmaImageComponent>
13 <aco:AmaTextComponent name="myText" layer="Media">
14 ...
15 </aco:AmaTextComponent>
16 </ac:SubComponents>
17 </aco:AmaImageTextComponent>
18 </aco:SubComponents>
19 </aco:AmaProductComponent>
20 ...
21 </aco:SubComponents>
22 </aco:AmaProductListComponent>
23 ...
24 <aco:AmaContactComponent name="Contact" layer="DocumentComponent">
25 ...
26 </aco:AmaContactComponent>
27 ...
28 </aco:SubComponents>
29 </aco:AmaCompanyHomepageComponent>

Listing 4.3: Document component composition example

components. However, the layout properties of a given component only describe the presen-
tation of its immediate subcomponents which encapsulate their own layout information in
a standard component-based way. Thus, in order to provide reuse and configuration, each
composite component stores and manages its layout information on its own. The concept of
adaptive layout managers will be introduced in detail in Section 4.3.2.

4.2.4 Hyperlink Components

Whereas aggregation relationships between components are expressed on the level of content
unit components and document components, navigational relationships between components
are defined by so-called hyperlink components, each defining an (optionally typed) directed
link between two “non-hyperlink” components7. Two kinds of of hyperlink components exist:
simple hyperlink components and hyperlink list components. While a simple hyperlink com-
ponent constitutes a directed (and optionally typed) navigational relationship between two
components (that act as its source and destination anchors), a hyperlink list component is a
collection of simple links aimed at the easier definition of index-like navigation structures.

For the sake of efficient document reuse, hyperlinks are always defined within the scope

7Even though hyperlinks are also considered as components, the document model does not allow to specify
hyperlinks between hyperlinks, i.e. the end points of a hyperlink may be only media components, content unit
components or document components.

c© Copyright TU Dresden, Zoltán Fiala 73

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

of a document component. The fact that a hyperlink component is specified within the
scope of a document component means that at least its source anchor is contained in (the
subcomponent hierarchy of) that document component. Consequently, the reuse of that
document component in another composition scenario also implies the reuse of its associated
hyperlinks.

The specification of hyperlink components is based on the XPath [Berglund et al. 2004]
and XPointer [DeRose et al. 2002] standards of the W3C. The source anchor of a hyperlink
component is unequivocally described by the identifier of its source component and an op-
tional offset. The source component of a hyperlink component is (if not further specified)
either the document component in the scope of which it was defined, or an arbitrary compo-
nent of its subcomponent hierarchy. Furthermore, an (optional) XPointer expression defining
an offset of the source link anchor in that component can be also specified. Typically, this
offset is needed in order to define a hyperlink anchor that is assigned only to a fragment of
a text component.

The destination of a hyperlink component is either a component in the subcomponent
hierarchy of the document component in which it was defined, or an arbitrary component
in another component-based Web document. Besides, external link destinations pointing to
arbitrary URIs are also allowed, thus facilitating to reference any external content.

Finally, hyperlink components can be optionally assigned a type and/or a class attribute,
as well. The former one allows for the specification of typed navigational relationships be-
tween components. However, the possible hyperlink types are not prescribed by the docu-
ment format and can thus be specified by component authors (e.g. by exploiting existing link
type classifications [Casteleyn and De Troyer 2002]). The latter one (class attribute) aims
at assigning a presentation class to hyperlinks. Links with different class attributes can be
visualized differently (by the definition of appropriate CSS media components attached to
their containing components) and thus be used for realizing link adaptation techniques such
as link annotation or link disabling (see Section 2.2.3).

The code snippet depicted in Listing 4.4 shows a simple hyperlink component defining a
navigational relationship between two components. It was defined in the scope of the docu-
ment component that was visually shown in Figure 4.1, representing a company homepage.
The source anchor of this link is the component called “Introduction” (see the From element
in line 5), its destination is the component called “Contact”. Since in this case both com-
ponents are subcomponents of “Company”, its reuse in another composition scenario also
implies the reuse of this hyperlink component. Note that in this example no link type was
defined.

4.3 Adaptation Support

The component-based document format supports a separation of concerns by distinguishing
between different abstraction levels of components as well as their interlinking. Important
aspects of a Web presentation, such as content, structure, semantics, navigation, etc. are han-
dled on different component levels, thus enabling a better reuse and configurability of (even
parts of) a Web presentation. Furthermore, this level-based model also facilitates the efficient
separation of different adaptation targets (i.e. parts or aspects of a Web presentation to be
adapted). The following paragraphs mention typical adaptation concerns to be considered
on the different component levels.

Adaptation of Media Components: Adaptation on the level of media components pri-

74 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaCompanyHomepageComponent name="Company">
2 <aco:Hyperlinks>
3 ...
4 <aco:AmaComponentLinkComponent name="Link_1" layer="Hyperlink">
5 <aco:From component="Introduction"/>
6 <aco:To component="Contact"/>
7 </aco:AmaComponentLinkComponent>
8 ...
9 </aco:Hyperlinks>

10 <aco:SubComponents>
11 ...
12 </aco:SubComponents>
13 </aco:AmaCompanyHomepageComponent>

Listing 4.4: Link component example

marily concerns media quality and is required to consider various device capabilities
or other technical constraints. For instance, in a device independent Web presentation
it is necessary to provide different instances of a certain picture (image component)
with variable size, color depth or resolution in order to automatically adapt to various
display types. Similarly, a video component should be provided with different bit rates
to be adjusted to the currently available bandwidth.

Adaptation of Content Unit Components: Adaptation on the level of content units
concerns the type and number of the included media components (that actually consti-
tute the structure of a content unit) and can be defined for different purposes. On the
one hand, technical properties of client devices can be taken into account. For example,
on a company homepage a user with a high performance client could be shown a short
video clip of the presented article, while others with low-performance terminals would
be presented an image and a textual description of that product. On the other hand,
the adaptation of content units may also consider semantic user preferences. Consider
again the case of two customers, one of them preferring detailed textual descriptions, the
other visual information. While the presentation for the first user might include content
units primarily referring to textual objects, the other could be shown multimedia infor-
mation, respectively. These kinds of adaptation were approved as very profitable e.g.
in the TELLIM project [Jörding 1999, Hölldobler 2001] focusing on electronic shopping
applications.

Adaptation of Document Components: Adaptation of document components concerns
the overall component hierarchy, i.e. the way document components are nested. This
results in different variations of component trees (and thus Web page structures) de-
pending on user preferences and client properties. For instance, consider the component
hierarchy shown in Figure 4.1 that represents a company homepage. Depending on the
interests and previous knowledge of users, the resulting Web page could be generated
differently. For internal users working as employees of the company, the document com-
ponent presenting the company’s history should not be inserted in the generated Web
page.

Nevertheless, note that the adjustment of document components may also depend on
other parameters, e.g. client capabilities. Let us consider the Web portal of a railway
company as an example. Whereas the desktop PC version of such a Web site might
include numerous parts such as timetable, online-shop, online travel agency, etc., the

c© Copyright TU Dresden, Zoltán Fiala 75

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

WAP version is mostly restricted to a minimal set of services, e.g. merely an online
timetable.

Adaptation of Hyperlink Components: Finally, adaptation on the level of hyperlink
components implies the adjustment of hyperlink targets as well as navigation struc-
tures according to information describing the actual usage context. It might concern
the usage of different adaptive navigation techniques, such as the conditional inclusion
or annotation of hyperlinks, the offering of navigation alternatives, etc. This adjustment
of hyperlink structures can allow a personalized navigation through a component-based
Web presentation.

In order to realize these adaptation scenarios, the component model facilitates two generic
adaptation mechanisms. First, it is possible to specify context-dependent adaptation vari-
ants for (different aspects of) components. Second, a facility is provided for describing the
adaptive layout of components by means of client-independent layout descriptors that can be
automatically adapted to different output formats. The rest of this section describes these
two mechanisms in more detail and illustrates them by representative examples.

4.3.1 Describing Adaptation Variants

To provide generic adaptation support, components (but also their parameters) may include
a number of (conditional) alternatives. As an example, the definition of an image component
might include two variants for color and monochrome displays. Similarly, the number, struc-
ture, spatial arrangement, and linking of subcomponents within a composite component can
also vary depending on the current usage context. The decision, which alternative is selected,
is made during document generation (see Section 4.5) according to a selection method which
is also encapsulated by the component.

Such selection methods are chosen by component developers at authoring time and can
represent arbitrarily complex conditional expressions parameterized by context model pa-
rameters. These parameters describe the user’s actual usage context (e.g. his knowledge,
characteristics, preferences, client device, location, etc.) and will be described in more detail
in Section 4.5.3. The XML-grammar for selection methods was specified as an XML Schema
definition and allows for the declaration of user model parameters, constants, variables, and
operators, as well as complex conditional expressions (such as if-then-else or switch-case)
of arbitrary complexity [Fiala et al. 2003a, Fiala et al. 2003c]. The appropriate reconfigura-
tion (adjustment) of a component’s adaptation logic allows to reuse it in different adaptation
scenarios.

The example code in Listing 4.5 demonstrates the definition of a media component’s vari-
ants as well as a corresponding selection method. It is taken from a Web presentation offering
different versions of media elements for different end devices (in high quality for desktop com-
puters and low quality for mobile clients), i.e. the appropriate variant is chosen based on the
actual client device. The possible variants to be selected are defined in the Variant elements
(see the lines 21 and 24). Again, the the namespace aada references the XML schema def-
inition AmaAdaptation.xsd which specifies the grammar for describing variants and their
corresponding selection methods.

The selection method is contained in the Logic tag (line 5), which is in this particular
example an IF-THEN-ELSE construct. The condition to be evaluated is specified within the
Expr element. Based on the Polish Notation (PN)8, it is an arithmetic expression consisting

8The PN-based definition of arithmetic expressions allows for their proper validation, as well as evaluation

76 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaImageComponent name="myAdaptiveImage">
2 <aco:MetaInformation>
3 <amet:ImageMetaData>
4 <aada:Variants>
5 <aada:Logic>
6 <aada:If>
7 <aada:Expr>
8 <aada:Term type="=">
9 <aada:UserParam>Device</aada:UserParam>

10 <aada:Const>Desktop</aada:Const>
11 </aada:Term>
12 </aada:Expr>
13 <aada:Then>
14 <aada:ChooseVariant>HQ_Picture</aada:ChooseVariant>
15 </aada:Then>
16 <aada:Else>
17 <aada:ChooseVariant>LQ_Picture</aada:ChooseVariant>
18 </aada:Else>
19 </aada:If>
20 </aada:Logic>
21 <aada:Variant name="HQ_Picture">
22 ...
23 </aada:Variant>
24 <aada:Variant name="LQ_Picture">
25 ...
26 </aada:Variant>
27 </aada:Variants>
28 </amet:ImageMetaData>
29 </aco:MetaInformation>
30 </aco:AmaImageComponent>

Listing 4.5: Describing adaptive variants

of a simple term (Term) that compares the context model parameter Device (referred to
as <UserParam>Device</UserParam>) with the constant “Desktop”9. The elements
Then and Else specify either (like in this case) the appropriate variants to be selected if the
condition holds or not, or contain another IF-THEN-ELSE or SWITCH-CASE construct.
However, the definition of the else-branch is optional. Whenever it is missing, the selection
logic describes conditional inclusion, i.e. the addressed variant is presented if and only if the
condition holds.

Note that such a component containing adaptation variants acts as an adaptive and
reusable “Web site building block”. Based on its internal adaptation logic, it can auto-
matically adjust (or reconfigure) itself to the current usage context. Furthermore, since both
this logic and the corresponding adaptation variants are inherently contained by it, it can be
reused as an adaptive unit of composition in different Web documents. As a consequence, it
even fulfills the definition of a self-adaptive software provided by [Oreizy et al. 1999]10.

While the adaptation logic described in Listing 4.5 is based on a simple conditional expres-
sion in the IF-THEN-ELSE style, Listing 4.6 shows another example that uses a SWITCH-

by XSLT stylesheets [Kay 2004].
9The children elements of a Term element might be again Term elements, thus allowing to define arbitrarily

complex arithmetic expressions.
10According to Oreizy et al., “self-adaptive software modifies its own behavior in response to changes in its

operation environment” [Oreizy et al. 1999].

c© Copyright TU Dresden, Zoltán Fiala 77

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

CASE construct allowing to easily select from more than two different alternatives. It is taken
from an eLearning example and aims at the selection of an appropriate document component
based on the expertise level of the actual user (Beginner, Advanced or Expert). Note the
optional Default element in line 19 aimed at determining the variant to be selected if none of
the other cases holds. It can be used to guarantee that the resulting component is not empty.

1 <aada:Variants>
2 <aada:Logic>
3 <aada:Switch>
4 <aada:Expr>
5 <aada:Term>
6 <aada:UserParam>Expertise</aada:UserParam>
7 </aada:Term>
8 </aada:Expr>
9 <aada:Cases>

10 <aada:Case value="Beginner">
11 <aada:ChooseVariant>Beginner_Version</aada:ChooseVariant>
12 </aada:Case>
13 <aada:Case value="Advanced">
14 <aada:ChooseVariant>Advanced_Version</aada:ChooseVariant>
15 </aada:Case>
16 <aada:Case value="Expert">
17 <aada:ChooseVariant>Expert_Version</aada:ChooseVariant>
18 </aada:Case>
19 <aada:Default>
20 <aada:ChooseVariant>Beginner_Version</aada:ChooseVariant>
21 </aada:Default>
22 </aada:Cases>
23 </aada:Switch>
24 <aada:Logic>
25 </aada:Variants>

Listing 4.6: Describing adaptation variants (Example 2)

As a matter of course, adaptation variants may be defined on all component levels. When
adjusting complex document structures to the current usage context the appropriate selection
methods are processed recursively, i.e. in a top-down-manner (beginning from the top-level
document component). The run-time evaluation process of such selection methods will be
described in detail in Section 4.5.

Parameter Substitution While the concept of adaptation variants allows to adjust vari-
ous component properties to parameters of the actual usage context, in some cases it is also
required to include the values of those parameters into the generated Web presentation. The
reason for this can be the intention to inform the user about his/her context or the need
for a better personalization of the Web application. For this reason the component-based
document format allows to utilize parameter substitution. As an example, the code snippet
shown in Listing 4.7 depicts a text component, the content of which is parameterized by the
context parameter LastName denoting the surname of the current user. When substituted
by the surname of the author of this thesis following text would be created: “You are logged
in as Mr/Ms Fiala.”.

Component (variants) combined with selection methods and parameter substitution allow
to describe the adaptation behavior of parts of a Web presentation in a declarative component-

78 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaTextComponent name="GreetingText" layer="Media">
2 <aco:MetaInformation>
3 <amet:TextMetaData>
4 <amet:value>
5 You are logged in as <aada:UserParam>Salutation</aada:UserParam>
6 <aada:UserParam>LastName</aada:UserParam>.
7 </amet:value>
8 </amet:TextMetaData>
9 </aco:MetaInformation>

10 </aco:AmaTextComponent>

Listing 4.7: Context parameter substitution example

wise manner. Nevertheless, the complexity of their underlying XML grammar makes it
very difficult to manually author such logical expressions and calls for intuitive visual tools
facilitating the graphical definition of appropriate XML documents. For this purpose the
AMACONTBuilder, a visual authoring tool for component-based Web documents will be
presented in Section 5.2.

4.3.2 Describing Adaptive Layout

In order to describe the spatial arrangement (layout) of components, the component-based
document format allows to attach XML-based layout descriptions [Fiala et al. 2003a] to
them. Inspired by the layout manager mechanism of the Java language (AWT and Swing)
and the abstract user interface representations of UIML [Abrams and Helms 2002] or XIML
[Puerta and Eisenstein 2002], they describe a client-independent layout allowing to abstract
from the exact resolution of the browser’s display. Note that layout managers of a given com-
ponent only describe the presentation of its immediate subcomponents which encapsulate
their own layout information in a standard component-based way.

The available layout managers are depicted in Figure 4.2. OverlayLayout allows to
present components on top of each other. BoxLayout lays out multiple components ei-
ther vertically or horizontally. BorderLayout arranges components to fit into five regions:
north, south, east, west, and center. It is especially useful to specify the layout of Web
presentations containing a header, a footer, sidebars, and a main content area. Finally,
GridTableLayout enables to lay out components in a grid with a configurable number of
columns and rows. Though it can be also realized by nested BoxLayouts, it was imple-
mented separately because Web applications often present dynamically retrieved sets of data
in a tabular way.

The code snippet in Listing 4.8 depicts a possible layout description of the content unit
from Listing 4.2 based on the layout manager BoxLayout. The contained image component
(aligned right) and the text component (aligned left) are arranged above each other, taking
30 and 70 percent of the available vertical space. Note that the alay namespace references
the XML schema definition AmaLayout.xsd which specifies the possible layout managers and
their specific attributes.

Layout managers are formalized as XML tags with specific attributes [Fiala et al. 2004a].
Two kinds of attributes exist: layout attributes and subcomponent attributes. Layout at-
tributes declare properties concerning the overall layout and are defined in the corresponding
layout tags. As an example the axis attribute of BoxLayout (see line 5 in Listing 4.8)
determines whether it is laid out horizontally or vertically. Subcomponent attributes describe

c© Copyright TU Dresden, Zoltán Fiala 79

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

OverlayLayout BoxLayout

GridTableLayoutBorderLayout

Figure 4.2: Abstract layout managers

how each referenced subcomponent has to be arranged in its surrounding layout. For instance,
the align attribute of myImage declares it to be right-justified. Table 4.1 summarizes the
possible attributes of the layout manager BoxLayout by describing their names, role, usage
(required or optional), and possible values.

Layout
Attributes Meaning Usage Values

axis Orientation of the BoxLayout req. xAxis|yAxis
space Space between subcomponents opt. int
width Width of the whole layout opt. string
height Height of the whole layout opt. string
border Width of border between subcomponents opt. int

Subcomponent
Attributes Meaning Usage Values

align Horizontal alignment of subcomp. opt. left|center|right
valign Vertical alignment of subcomp. opt. top|center|bottom
ratio Space taken by subcomponent opt. percentage
wml visible Should be shown on same WML card? opt. boolean
wml desc Link description for WML opt. string

Table 4.1: BoxLayout attributes [Fiala et al. 2004a]

80 c© Copyright TU Dresden, Zoltán Fiala

4.3. Adaptation Support

1 <aco:AmaImageTextComponent name="myUnit" layer="ContentUnit">
2 <aco:MetaInformation>
3 <amet:LayoutProperties>
4 <alay:LayoutManager>
5 <alay:BoxLayout axis="yAxis" border="1">
6 <alay:ComponentRef ratio="30%" align="right">
7 myImage
8 </alay:ComponentRef>
9 <alay:ComponentRef ratio="70%" align="left">

10 myText
11 </alay:ComponentRef>
12 </alay:BoxLayout>
13 </alay:LayoutManager>
14 </amet:LayoutProperties>
15 </aco:MetaInformation>
16 <aco:SubComponents>
17
18 </aco:SubComponents>
19 </aco:AmaImageTextComponent>

Listing 4.8: Layout manager example

Even though most attributes are device independent, two platform-dependent attributes
were also added in order to consider the specific card-based structure of WML presentations.
Note the optional attribute wml visible that determines whether in a WML presentation
the given subcomponent should be shown on the same card. If not, it is put onto a separate
card that is accessible by an automatically generated hyperlink, the text of which is defined
in wml description. This mechanism of content separation is used since the displays of
WAP-capable mobile phones are very small.

The exact rendering of media objects is done at run time by XSLT stylesheets that trans-
form components with such abstract layout properties to Web document fragments in a
specific output format (see Section 4.5). A number of stylesheets for converting those de-
scriptions to formats such as XHTML (and its different modules), cHTML, WML, etc. have
been developed [Fiala et al. 2003a, Hinz et al. 2004].

While adaptive layout managers support the automatic adaptation of abstract layout
descriptions to different output formats, component authors can also use them in combination
with adaptation variants, thus being able to specify even more precise layout adaptations that
are explicitly parameterized by the current usage context. For example, while the presentation
of a content unit containing a list of images could be realized as a GridTableLayout on a
browser with sufficient horizontal resolution, another client device with a small display width
should render it according to a vertical BoxLayout. The code snippet in Listing 4.9 depicts
such combined layout adaptation definition. The appropriate layout manager is selected
according to the horizontal resolution (denoted by the context parameter InnerSizeX) of
the current browser window. Thus, the layout of a document component can be adapted
independently of its other aspects, such as its subcomponent, hyperlinks, etc.

Again, the complexity of the XML code shown in Listing 4.8 and Listing 4.9 makes it
obvious that the manual creation of layout manager descriptions with a text or XML editor
might be a cumbersome task. For the visual authoring of adaptable layouts Section 5.2.4 will
introduce the Layout Editor module of the authoring tool AMACONTBuilder.

c© Copyright TU Dresden, Zoltán Fiala 81

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <alay:LayoutManager>
2 <alay:Variants>
3 <aada:Logic>
4 <aada:If>
5 <aada:Expr>
6 <aada:Term type="gt">
7 <aada:UserParam>InnerSizeX</aada:UserParam>
8 <aada:Const>600</aada:Const>
9 </aada:Term>

10 </aada:Expr>
11 <aada:Then>
12 <aada:ChooseVariant>GridTableLayout_Variant</aada:ChooseVariant>
13 </aada:Then>
14 <aada:Else>
15 <aada:ChooseVariant>BoxLayout_Variant</aada:ChooseVariant>
16 </aada:Else>
17 </aada:If>
18 </aada:Logic>
19 ...
20 </alay:Variants>
21 <aada:Variant name="GridTableLayout_Variant">
22 ...
23 </aada:Variant>
24 <aada:Variant name="BoxLayout_Variant">
25 ...
26 </aada:Variant>
27 </alay:LayoutManager>

Listing 4.9: Combined context dependent layout adaptation

4.4 Document Component Templates

The document components introduced above are static, i.e. they represent a concrete piece
of (adaptable) Web content, such as a specific instance of an image (as a media component
instance with optional quality alternatives) or a chapter in an eLearning course (as a document
component instance). Still, in order to provide support for data-driven Web applications, like
online-shops, product presentations, e-galleries, etc., there is a need for components that are
created from dynamic data sources on-the-fly.

For this purpose so-called document component templates have been introduced. These
are component skeletons (i.e. component instances containing placeholders) that declare the
structural, behavioral and layout aspects of components independent of their actual con-
tent [Fiala et al. 2004b]. At run-time, component templates are extended (i.e. filled) with
content that is dynamically queried (retrieved) from a data source. Therefore, they are as-
sociated with a query that can be parametrized by arbitrary request and/or context model
parameters. As an example, the XML-code in Listing 4.10 describes a simple media compo-
nent template11:

The namespace t aco dictates that the component acts as a component template. The
query associated with it is described in the query attribute of its starting tag. In this par-
ticular case this is an SQL expression querying a table of a relational database that contains

11As a matter of course, the same mechanism is applicable for content unit component templates, document
component templates, and hyperlink component templates.

82 c© Copyright TU Dresden, Zoltán Fiala

4.4. Document Component Templates

1 <t_aco:AmaImageComponent name="productimage" type="template"
2 query="SELECT source, width, height
3 FROM productimages
4 WHERE ID=substitute(id)">
5 <aco:MetaInformation>
6 <amet:ImageMetaData>
7 <amet:source><t_temp:query field="source"/></amet:source>
8 <amet:width><t_temp:query field="width"/></amet:width>
9 <amet:height><t_temp:query field="height"/></amet:height>

10 </amet:ImageMetaData>
11 </aco:MetaInformation>
12 </t_aco:AmaImageComponent>

Listing 4.10: Simple component template example

images of a company’s products described by appropriate metadata12. The expression substi-
tute(id) references the id request parameter of the actual HTTP request. The values from the
corresponding result set are referred to as <t_temp:query field="myname"/>,where
myname is the name of a given field. As an example, the resulting media component’s source
attribute is substituted by the value of the database field picturesource.

While in this example all metadata attributes of the image component are dynamically
retrieved, note that it is also possible to define selected attributes as constants so that they
remain unchanged for all instantiations. Furthermore, it is also possible to parameterize a
template’s query by arbitrary context model attributes. In such a case these parameters are
substituted by their corresponding values before the query is executed, i.e. the data to be
inserted is queried in a personalized way.

The above example describes a single media component template, the actual content of
which is delivered by a dynamic data source. Still, in a data-driven Web application it
is not only required to dynamically retrieve single content (component) elements, but also
component sets, such as all books of a given author (in an electronic book store), or all
employees of a department (in an institutional Web site). For such cases the component-
based document format allows to define so-called iterative component templates. Again, a
simple example of a content unit containing a dynamic set of image components is depicted
in Listing 4.11.

The content unit component template defined in this example contains (as its subcompo-
nent) a dynamically iterated image component (see the iterate attribute in line 16). Con-
sequently, this media component is iterated (repeated) according to the size of the result
set delivered by the template’s query (line 3) so that each iteration is parameterized by the
corresponding result. To ensure that the resulting image components have unequivocal name
attributes the idField attribute denoting a unique identifier field in the query’s result set is
used (see line 1). It dictates that for each repetition (iteration) the name attribute of the
iterated image component is complemented with a unique postfix (in this case the ’id’ field
of the query). This explicit definition of the result set’s unique identifier field is necessary
since the component-based document format is not by definition associated with a given un-
derlying data model. On the other hand, the flexibility of the template mechanism allows to
refer to arbitrary data sources, and even to different ones within the same component-based

12The concept of component templates was realized for SQL-based queries on relational databases but can
be easily extended for other data sources such as XML or RDF databases in a straightforward manner. In
Section 5.3.2 it will be shown how component instances can be automatically generated based on RDF data.

c© Copyright TU Dresden, Zoltán Fiala 83

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <t_aco:AmaListComponent name="productimagelist"
2 type="iterativeTemplate"
3 query="SELECT id,source,width,height FROM
4 productimages"
5 idField="id">
6 ...
7 <alay:LayoutManager>
8 <alay:BoxLayout axis="yAxis">
9 <t_alay:ComponentRef iterate="yes">

10 picture
11 </t_alay:ComponentRef>
12 </alay:BoxLayout>
13 </alay:LayoutManager>
14 ...
15 <aco:SubComponents>
16 <t_aco:AmaImageComponent name="productimage" iterate="yes">
17 <aco:MetaInformation>
18 <amet:source><t_temp:query field="source"/></amet:source>
19 <amet:width><t_temp:query field="width"/></amet:width>
20 <amet:height><t_temp:query field="height"/></amet:height>
21 </aco:MetaInformation>
22 </t_aco:AmaImageComponent>
23 </aco:SubComponents>
24 </t_aco:AmaListComponent>

Listing 4.11: Iterative component template example

document.
As the resulting content unit contains a set of image components, their spatial arrangement

has to be specified, as well. However, since the number of these subcomponents is not known
at authoring time, only the layout managers BoxLayout (with an initially undefined number of
cells) and GridTableLayout (with only one predefined dimension) are allowed and the missing
dimensions have to be automatically computed at run time when evaluating the template’s
query. In the particular example shown in Listing 4.11 a vertical BoxLayout is used.

At run time (see Section 4.5), component templates are dynamically filled with content
according to their queries as well as the actual state of the corresponding request parameters.
Since component templates might aggregate other component templates, this evaluation pro-
cess is performed recursively and results in dynamically generated component instances, i.e.
the “placeholders” in the original templates (component skeletons) are substituted by the ac-
tual query’s specific results. Thus, after being evaluated, component templates can be treated
in the same way as “conventional” static components. Furthermore, while the examples in
Listings 4.10 and 4.11 contain select queries, it is also possible to define update queries in
component templates. In this case these queries can be used to add (or manipulate) data to
(in) a database.

Component templates provide an effective means for the creation of data-driven component-
based Web presentations. For their intuitive creation and manipulation a visual authoring
tool called the AMACONTBuilder will be introduced in Section 5.2.

84 c© Copyright TU Dresden, Zoltán Fiala

4.5. Document Generation

4.5 Document Generation

The component-based document format allows to compose adaptive Web documents by creat-
ing, configuring, aggregating, and interlinking reusable components (or component templates)
on different abstraction levels. When requested by a particular user, such document structures
have to be automatically adjusted to his current usage context and delivered to his end de-
vice in an appropriate Web output format. For this purpose a modular document generation
architecture was developed [Fiala et al. 2003a, Hinz and Fiala 2004, Hinz and Fiala 2005].

The document generation architecture serves several purposes: 1) the automatic trans-
lation of component-based documents to Web presentations according to the actual usage
context, 2) the storage of this context information, 3) as well as its continual updating based
on user’s navigation and interaction history. While not being the central focus of this work,
the rest of this section describes this functionality in more detail13.

4.5.1 Pipeline-based Document Generation

As illustrated in the lower part of Figure 4.3, the process of document (presentation) genera-
tion is based on a stepwise pipeline concept14. According to the component-based document
format introduced above, its inputs are complex document component instances or document
component templates. They are retrieved from a component repository (or another source
aimed at dynamically generating components) according to a user request that is optionally
parameterized by a number of HTTP request parameters. Still unadapted, they encapsulate
all variants concerning their content, layout, structure, and interlinking.

In the document generation pipeline document components are processed by a series of
transformations. Each transformation deals with a given application (or adaptation) concern
and produces output for the next transformation step until a final Web presentation is gen-
erated. Note that the possibility to use such a staged architecture is a natural consequence
of the clean separation of concerns, a basic design principle of the component-based docu-
ment format. While the modularity of the document generation pipeline allows for different
transformer configurations, Figure 4.3 depicts a typical one.

First, possible component references (to components in other XML documents) are re-
solved and hierarchical component structures are created. Second, whenever the processed
documents contain component templates, these are filled with instance data that is dynam-
ically retrieved by the on-the-fly execution of their appropriate queries. Subsequently, the
resulting component instances are subdued to a number of adaptation transformers. Param-
eterized by the current state of the context model (see Section 4.5.2), each of them considers
a certain adaptation aspect by the selection, configuration, or device-specific rendering of
component variants.

In Section 4.3 two mechanisms for specifying adaptation were mentioned: one for describ-
ing adaptation variants and another one for describing adaptive layout. Consequently, the
adaptation of document instances is also performed in two main stages. First, a transformer
aimed at processing components containing adaptation variants is invoked. It handles all
appropriate selection methods in a recursive (top-down) manner and keeps only the selected

13The document generation architecture, its context modeling framework, as well as the investigation of its
performance issues is a primary research focus and contribution of Michael Hinz. This section describes these
topics as detailed as required to understand the overall context of the work presented in this thesis. For more
information we refer to the corresponding publications.

14Note that this stepwise pipeline concept corresponds to the architectural style “staged architectures”,
proposed by Aßmann [Aßmann 2005] for active documents (see Section 3.2.9)

c© Copyright TU Dresden, Zoltán Fiala 85

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

Pipeline-based Document Generation

Context Model

Context Modeling

Request

Transform
component

template

evaluation

Rendering
XHTML.full

XHTML.basic

XHTML.MP

WML

Component

Repository

Session

Profile
Device

Profile

Update

Location

Modeling

Device

Modeling

Adaptation

Client Device

...

Profile

User

Modeling

Transform
adaptation

of

component

variants

Sensor Components

Inter-

action
Sensors

Location

Sensors

Device

Properties
Sensors

Device Properties / UAProf

User Position

User Interactions

Transform
resolve

comp.

references

Figure 4.3: Overview of the document generation architecture

content variants in the processed XML stream, i.e. all other variants are omitted from the
processed document. The result of this transformation step is a final component hierarchy
without adaptation variants.

After all component variants and conditions are evaluated, the last transformer creates
a Web page in an output format supported by the user’s browser device. For instance, a
BoxLayout in XHTML is realized by means of a table (and its specific attributes) with either
one column or one row. However, not all layout managers can be visualized properly on all
devices. As an example, since PDAs or WAP phones have very small displays, a horizontal
BoxLayout is automatically converted to a vertical arrangement of subcomponents on those
devices. This kind of adaptation is performed by the system, i.e. no explicit specification from
the author is needed. The document generation pipeline was realized based on the Cocoon
publishing framework [Ziegeler and Langham 2002].

4.5.2 The Context Model

The information describing the actual user and his usage context is stored in the extensible
context model (see the middle part of Figure 4.3). It is represented in XML and consists
of a set of context profiles15, each maintaining up-to-date data on a given user/context
feature. The structure of context profiles relies on CC/PP (Composite Capability/Preference
Profiles [Klyne et al. 2003]), an RDF grammar for describing device capabilities and user
preferences in a standardized way. Still, while the original CC/PP specification defines a

15While some literature uses the notion of a user profile or context profile for describing usage data that is
static with regard to a Web session, the profiles of the context model may contain both static and dynamic
information. The update process of context information will be described in Section 4.5.3.

86 c© Copyright TU Dresden, Zoltán Fiala

4.5. Document Generation

profile as a flat two-level hierarchy of components and their attributes that are represented
as (sets of) literals, it is allowed to utilize arbitrary deep XML structures for describing
component attributes. As a general grammar, CC/PP makes no specific assumptions on
concrete context characteristics. Therefore, for each profile a corresponding schema (e.g.
expressed by an XML Schema or RDFS declaration) has to be provided.

Since the component-based document model is not bound to a specific application domain,
the context information used in a given adaptation scenario is also typically very application
specific. Therefore, the context model can be arbitrarily extended by the introduction of
new context profiles, each specified by a given schema definition. Still, there are also some
predefined profiles that can be generally used for a broad range of ubiquitous and context-
aware adaptive Web presentations. The following list gives a representative overview of them.

• The Identification Profile provides basic personal information about the user, such
as his name, login ID, email address, age, etc. This data is typically static with regard
to a given browsing session and can be acquired by explicitly asking the user e.g. in
the beginning of a Web session. For example, the login ID of the user is determined
when he starts his browsing session. As a matter of course, the usage of this profile for
adaptation purposes is optional.

• The Device Profile contains technical information describing the user’s client device.
It is represented on the basis of the WAP User Agent Profile (UAProf [Wir 2001]), a
common CC/PP vocabulary aimed at describing WAP devices. However, to support a
broader range of mobile devices (e.g. PDAs) specific extensions of UAProf have been
made [Hinz et al. 2004].

While parts of the Device Profile (such as the device’s hardware platform) are static
with regard to a Web session, note that it contains also parameters that can change
according to user interactions. For example, when the user resizes his/her browser
window, the appropriate context parameter should be updated, respectively. The ac-
quisition and update process of context model parameters according to user interactions
will be described in Section 4.5.3.

• The Location Profile stores the physical (geographical) location of the user. This
information is described both by means of physical coordinates as well as semantic
location information describing the semantic meaning of a location (e.g. the Multimedia
Chair of the Dresden University of Technology) and is retrieved from a landmark store.
For more information on the appropriate location context descriptors the reader is
referred to [Hinz and Fiala 2005].

• The Session Profile collects information on the actual user’s browsing and interaction
history within a component-based Web presentation. Its main goal is to track user
access information, such as the number of the user’s previous sessions in a given ap-
plication, the unique identifiers of the document components he already visited as well
as the interactions he performed on selected media components (e.g. starting a video,
enlarging an image component, etc.). This profile is automatically updated at each
user request and is an important basis for the utilization of user modeling mechanisms
facilitating dynamic adaptation (adaptivity).

The example code in Listing 4.12 illustrates a CC/PP-based context model description.
Note that while in this case only a small excerpt from the Identification Profile and the
Device Profile is shown, the actual context description might contain an arbitrary number

c© Copyright TU Dresden, Zoltán Fiala 87

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

1 <ContextModel>
2 ...
3 <IdentificationProfile>
4 <ccpp:component>
5 <UserData>
6 <ID>fiala</ID>
7 <Title>Mr.</Title>
8 <Firstname>Zoltan</Firstname>
9 <Lastname>Fiala</Lastname>

10 <Age>29</Age>
11 </UserData>
12 </ccpp:component>
13 ...
14 <IdentificationProfile>
15 ...
16 <DeviceProfile>
17 <ccpp:component>
18 <HardwarePlatform>
19 <ColorCapable>Yes</ColorCapable>
20 <TextInputCapable>Yes</TextInputCapable>
21 <ImageCapable>Yes</ImageCapable>
22 ...
23 </HardwarePlatform>
24 </ccpp:component>
25 ...
26 <ccpp:component>
27 <SoftwarePlatform>
28 <CcppAccept-Language>de</CcppAccept-Language>
29 ...
30 </SoftwarePlatform>
31 </ccpp:component>
32 ...
33 </DeviceProfile>
34 ...
35 </ContextModel>

Listing 4.12: Extract from an example context model

of profiles. For more detailed information on the utilized context model and its profiles the
reader is referred to [Hinz et al. 2004, Hinz and Fiala 2005].

4.5.3 Support for Context Modeling and Interaction Processing

The pipeline-based document generation process supports adaptability (or static adaptation)
by adjusting complex document structures to available information describing the actual
usage context. However, to facilitate adaptivity (i.e. dynamic adaptation based on user’s
browsing behavior), there is a need for additional mechanisms. First, user interactions (or
other external events, such as bandwidth fluctuations) have to be acquired that might influ-
ence specific parts of the usage context and thus lead to a dynamic reconsideration of the
presentation. Second, the context model has to be updated based on this acquired informa-
tion, respectively.

To facilitate these mechanisms the document generation architecture provides a context
modeling framework that allows to utilize an extensible set of sensor components and context

88 c© Copyright TU Dresden, Zoltán Fiala

4.5. Document Generation

modeling components [Hinz et al. 2006] (see the upper part of Figure 4.3). Whereas the
sensor components aim at acquiring user interactions (such as following links, or interacting
document with components) device capabilities (e.g. information on the user’s client device
type or current browser window size) or other kinds of context information (e.g. location),
the context modeling components perform updates of the context model according to this
information on the server side. As a matter of course, the usage of a given context modeling
(or user modeling) strategy is typically strongly dependent on the given application scenario.
Still, the document generation architecture provides a number of generic facilities that can be
efficiently used for acquiring and processing interactions in a broad range of component-based
adaptive Web presentations.

4.5.3.1 Acquiring User Access Information and Device Capabilities

Whenever a user follows a link or submits a form in the generated Web presentation, the
request sent to the server contains standard HTTP request information (in form of request
parameters). Furthermore, the document generation architecture allows to automatically
extend this information by more detailed data gathered both on the user’s interactions as
well as his actual context (e.g. device capabilities and location information).

In order to gather user access in a component-based adaptive Web presentation, component
authors can configure selected components as “observed” by setting their watched attribute
to true at authoring time. Whenever such an observed component is included in the resulting
Web presentation (i.e. if it is not omitted by a certain selection method), the generated Web
page is automatically enriched with sensor components based on client side code fragments
aimed at tracking user interactions on those components. The fact that a component was
presented on the user’s browser is tracked as a “trivial” interaction with that component
(meaning the user saw that component). However, some media components allow for more
“complex” interactions (such as starting a video, enlarging an image, etc.).

When requesting another component-based Web document, the identifiers of the observed
components as well as the interactions performed on them are automatically sent to the server
side where the session profile is updated, respectively. Note that the utilization of such user
access information for adaptation purposes is a basic facility in adaptive hypermedia and Web-
based systems and was successfully applied in different application scenarios [Jörding 1999,
De Bra et al. 2002, Casteleyn 2005].

The acquisition of client device capabilities happens in a similar way as the acquisition
of user interactions, i.e. by the insertion of device capability sensors in form of client-side
code fragments. Again, the appropriate code fragments are automatically inserted into the
generated Web presentation and collect up-to-date information about the user’s browser
device (such as its type, supported media types, and plug-ins, current browser window size,
etc.) and location. The gathered information is encoded in a UAProf like representation and
integrated in the HTTP request by a client/server communication component for processing
that information on the server. For more information on the technical realization of these
mechanisms the reader is referred to [Hinz and Fiala 2005].

4.5.3.2 Context Modeling

As described above, the HTTP requests originating from the client contain besides standard
request parameters additional information describing user interactions, device characteris-
tics, etc. Before the next hypermedia page is generated, this information has to be processed

c© Copyright TU Dresden, Zoltán Fiala 89

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

and the context model updated, respectively. For this purpose the document generation ar-
chitecture allows utilizing an extensible set of context modeling components. Providing a
well-defined interface for accessing the request parameters (incl. the information delivered
by the sensor components) and manipulating the context model, these components can be
programmed or configured to perform arbitrary context model updates based on the newly ac-
quired information. Furthermore, they can also be used to implement server-side application
logic, such as performing a database query, invoking a Web service, etc.

The currently existing repertoire of context modeling components comprises modules for
device modeling (aimed at updating the device profile), location modeling (for storing the
exact geographical position of the user in the context model) as well as a number of solutions
for user modeling [Hinz and Fiala 2005] that can be configured and activated depending on
the current application scenario. As an example, in a prototypical component-based Web
presentation for an online video store a user modeling algorithm based on the incremental
learning algorithm CDL4 [Shen 1996, Hinz et al. 2004] was successfully utilized, allowing to
predict user’s preferences based on their interactions with media objects. Nevertheless, in
order to support a broad number of context modeling mechanisms, it is also possible to
implement and easily integrate new context modeling components.

When the process of context modeling was performed a new component-based document
is retrieved and put through the presentation generation pipeline, respectively. This might
be an already existing component-based Web document (or document template) from the
component repository, but it is also possible to redirect the request to a backend application
that dynamically generates such a document. Thus, a component-based Web presentation
can be also effectively used as the adaptive front-end for a more complex back-end application.
Such a scenario will be described in more detail in Section 5.3.

4.6 Summary and Model Benefits

This chapter a presented concern-oriented component model for dynamic adaptive Web docu-
ments. The concept of declarative document components was introduced and a corresponding
XML-based component-description language was presented. The different component layers
addressing both different application concerns and adaptation facilities were explained by a
number of examples. Furthermore, a pipeline-based document generation architecture for the
on-the-fly publishing of component-based Web presentations was also briefly described.

Before turning to the authoring process of component-based adaptive Web presentations
and its tool support in Chapter 5, the rest of this section summarizes selected important
aspects and characteristics of the document model. First, Section 4.6.1 describes its main
analogies and differences to the already presented hypermedia reference models Dexter and
AHAM. Then, Sections 4.6.2 to 4.6.5 recapitulate a selection of its main benefits, among them
component reuse and configurability, adaptation support, extensibility, as well as support for
Web annotations16.

16In Section 3.2.10, a number of requirements towards component models for adaptive Web applications
were mentioned, which also served as the basis for the design of our own model. Note, however, that this
section recapitulates only a selection of those aspects. Other issues (e.g. the separation of concerns, device
independence, or template support) were already in detail discussed throughout this chapter and thus do not
need further emphasis.

90 c© Copyright TU Dresden, Zoltán Fiala

4.6. Summary and Model Benefits

4.6.1 The Component Model vs. Dexter and AHAM

In Chapter 2, the two reference models Dexter and AHAM were introduced to capture the
main characteristics of (adaptive) hypermedia systems. Since the concern-oriented compo-
nent model presented in this chapter is an approach aimed at implementing adaptive Web
applications, this section summarizes its main analogies and differences to those reference
models.

First, we note that the concept of document components corresponds to the component
concept of Dexter. Nevertheless, by the introduction of different component layers, our model
provides a more explicit typing as well as a fine-grained consideration of different concerns
involved in a Web or hypermedia application. Furthermore, whereas Dexter keeps the Within-
Component layer unspecified, the media component layer of our model specifies in detail the
supported atomic content elements and the specification of their attributes. Moreover, while
Dexter considers components to be static with regard to their content (and is thus mainly
applicable for static hypermedia presentations), the concept of component templates (in our
model) supports even data-intensive applications.

Another similarity of our model to Dexter (and AHAM) is the consideration of hyperlinks
as components. However, in contrast to both reference models, hyperlinks with several end
points and/or bidirectional references are not supported. The reason for these restrictions
is the goal to explicitly consider the specific characteristics of the World Wide Web as a
hypermedia system (see Section 2.1.3).

The concept of abstract layout descriptions (layout managers) corresponds to Dexter’s
presentation specifications. Yet, instead of being separated from the actual components (e.g.
as part of a specific Run-Time layer), it is one of their inherent properties.

Finally, similar to the Teaching Model of AHAM, the concern-oriented component model
also sets a great store by supporting adaptation. However, whereas the adaptation rules
of AHAM are stored as separate entities, the concern-oriented component model considers
them as parts of components allowing for their adaptation in a component-based manner.
Moreover, whereas AHAM (and its reference implementation AHA!) mainly focus on the con-
ditional inclusion/exclusion or the annotation of components, our model allows to implement
a broader range of adaptation techniques. As will be described in Section 4.6.4, the combi-
nation of component templates, abstract layout descriptions, and their conditional variants
allows to implement most of the adaptation techniques introduced by Brusilovsky (see again
Section 2.2).

4.6.2 Support for Component Reuse and Configurability

A very important aspect of effectively engineering Web sites is the reuse of formerly de-
veloped artefacts. However, the current coarse-grained document-oriented implementation
model of the Web makes it difficult for authors to identify and efficiently reuse configurable
content fragments of a Web presentation [Gaedke et al. 2000]. The component-based doc-
ument model presented in this chapter tries to solve this problem by defining fine-granular
Web components for creating Web applications. By encapsulating their properties and func-
tionality in a component-wise manner, they can be easily reconfigured and thus be utilized
in different application scenarios.

The level-based structure of the document model supports the effective reuse of compo-
nents of a certain level in components on higher levels. For instance, an adaptive image
component being capable to adjust itself to the current screen size can be reused as a “black-
box” in different content units. Similarly, a dynamic content unit arranging a list of pictures

c© Copyright TU Dresden, Zoltán Fiala 91

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

in a tabular way might be easily reused by being filled with different image components. Fur-
thermore, the recursive nature of document components facilitates the reuse of component
trees of arbitrary depth and granularity. Since each component encapsulates its structure
(subcomponents and links), presentation (layout managers), and adaptation behavior (in
form of selection methods) in an inherent way, all this functionality is automatically “carried
with” when applying the component in another composition scenario.

As a matter of course, a crucial issue of the efficient reuse of Web implementation artefacts
is their ease of (re)configuration. Therefore, the description language of document compo-
nents provides a clear separation of independent concerns (content, structure, presentation,
navigation, adaptation) by utilizing separate descriptors (metadata interfaces) for configuring
all these different issues. Whereas e.g. in an HTML document all these aspects are “interwo-
ven” to a coarse-grained file-based resource, the component-based document model enables
component authors to configure or manipulate them separately. As an example, a component
developer might define two different layout variants for a component (e.g. one for a desktop
PC and another one for a handheld device) without influencing its content or interlinking.

4.6.3 Extensibility Support

As described in Section 4.2, the component-oriented document model rests upon a level-based
architecture. That is to say, all possible components are derived from the basic (abstract)
component types media component, content unit component, document component, and hy-
perlink component. Each of these abstract types has a number of predefined concrete derived
types (e.g. in the case of media components these are image component, text component,
structured text component, audio component, etc.). However, it is also easily possible to
introduce new component types on each abstraction level.

As an example, the introduction of a new media component type requires the extension
of the schema definition AmaComponent.xsd with a new component type (that inherits from
the abstract type AmaMediaComponent based on the substitution group mechanism of XML
Schema [Fallside and Walmsley 2004]) and the specification of its metadata properties in
the schema definition AmaMetaData.xsd. Furthermore, the existing layout stylesheets for
appropriately transforming the new media component descriptions into a given Web output
format (e.g. HTML, cHTML, WML) have to be adjusted, accordingly. All other functionality
(e.g. the ability to define adaptation variants, layouts, hyperlinks) is defined for the abstract
component definitions, i.e. it can be utilized by each instance of the new component type, as
well.

Besides component types, it is also easy to extend the component description languages
with new layout managers and adaptation logics. For instance, the definition of a new layout
manager type implies the extension of the schema definition AmaLayout.xsd by declaring
its layout attributes and subcomponent attributes (see Section 4.3.2). Furthermore, the ap-
propriate stylesheets for transforming abstract layout descriptions to a given output format
have to be extended. However, this concerns only the rendering of format specific container
elements (e.g. tables, lists, etc.) aimed at the presentation of the actual content represented
by the embedded media objects, the rendering of media components is not depending of the
actual layout manager.

4.6.4 Adaptation Support

As discussed in Section 4.3, the component-based document format supports two basic adap-
tation facilities: the possibility to define component alternatives (on different component

92 c© Copyright TU Dresden, Zoltán Fiala

4.6. Summary and Model Benefits

levels), as well as to describe the layout of components in an abstract and implementation
independent way. Though being simple adaptation mechanisms, note that these facilities
can be effectively utilized to realize a number of adaptation techniques. According to the
already mentioned taxonomies of Brusilovsky [Brusilovsky 1996, Brusilovsky 2001] as well as
Paterno and Mancini [Paterno and Mancini 1999], the following lists comprise the supported
content-level, link-level, and presentation-level adaptation facilities and their component-
based realization:

Content-Level Adaptation

• Support for page variants and fragment variants by the definition of content
alternatives on different abstraction levels

• Conditional inclusion of fragments by defining conditional variants for sub-
components

• Adaptation of media content by offering media components with quality al-
ternatives

• Adaptation of modality by providing content units with varying types of in-
cluded media elements

Link-level Adaptation

• Link Disabling based on the conditional inclusion/exclusion of hyperlink com-
ponents

• Link Removal by the conditional inclusion of both hyperlink components and
the media components serving as their anchors

• Link Annotation based on the conditional assignment of style classes to hyper-
link components

• Link Hiding based on the conditional assignment of style classes to hyperlink
components

• Link Generation by the dynamic inclusion of hyperlink components based on
context-dependent component templates

• Link Sorting by the dynamic inclusion and ordering of hyperlink components
based on context-dependent component templates

Presentation-Level Adaptation

• Support for layout variants based on conditional alternative layout manager
definitions

• Adaptive styling of pages and page fragments by utilizing alternative CSS
components

As can be seen, the adaptation support provided by our model go far beyond the capa-
bilities of related component-based and document-oriented approaches (see Section 3.2.10).
Furthermore, as was described in Section 4.5, it also supports the automatic generation of
Web presentations in different output formats, among them (X)HTML, cHTML, or WML.

c© Copyright TU Dresden, Zoltán Fiala 93

Chapter 4. A Concern-Oriented Component Model for Adaptive Web Applications

4.6.5 Support for Web Annotations

Annotating Web pages is an important aspect of asynchronous communication on the WWW.
Authors and visitors of Web applications attach notes to certain pieces of Web content in
order to remember things better, to communicate with each other or to manage information
more intelligently. Typical scenarios of Web annotations are Web-based learning systems
allowing students and tutors to communicate, distributed authoring environments supporting
the concurrent editing of content, and even product presentations, where users give feedback
to the system via personal remarks.

Existing annotation systems, like ComMentor [Röscheisen et al. 1995], CritLink [Yee 1998],
CoNote [Davis and Huttenlocher 1995], YAWAS [Denoue 1999], iMarkup [@imarkup], Anno-
tator [Ovsiannikov et al. 2000], WebWise [Grønbæk et al. 1999], etc. mainly focus on anno-
tating static Web pages which do not change their content, structure, and layout temporally.
In general, an annotation is clearly defined by the URL of the Web page containing it and
some anchor points within that page [Denoue and Vignollet 2000]. A significant disadvantage
of these tools is the lacking support for separation of content, structure, and layout. Annota-
tions are not attached to the contents itself, rather to the Web pages containing them. Notes
go lost, when the same content is presented on a different page, in a new context or with a
changed layout. Thus, this mechanism is not suitable for dynamic Web documents generated
at runtime for which no persistent state and no constant layout exists.

Abstracting from the coarse-grained model of current Web implementation languages, the
proposed document model and its document generation architecture support the creation of
annotations to reusable components. That is to say, the smallest objects to be annotated
are not whole Web pages but document fragments, i.e. media components, content units or
document components. When a user marks a Web page generated on the basis of Web com-
ponents, his annotations can be reversely mapped to the fine-granular content components
and stored as specific component metadata. This reverse mapping is supported by automat-
ically enriching the generated Web page source code (e.g. HTML) by appropriate semantic
markup and client-side Java script code fragments. Annotation anchors are unequivocally
located by the identifier of the corresponding component and some offset coordinates within
it. When the same component is used in another presentation - possibly on a different client
or in a different context - the attached annotations can be reused, too.

While not being a central issue of this thesis, we note that concept of attaching fine-
granular annotations to reusable, adaptive components was prototypically implemented in
an annotation system called DynamicMarks. For more detailed information on it the reader
is referred to [Fiala and Meissner 2003].

94 c© Copyright TU Dresden, Zoltán Fiala

