Chapter 5

The Authoring Process and its Tool Support

“We shall not fail or falter; we shall not weaken or tire. Give us the tools and we will
finish the job.”!

The document model introduced in Chapter 4/ allows to create adaptive Web presentations
from reusable implementation artefacts (components) that encapsulate adaptable content,
navigation, and layout on different abstraction levels. Still, even though component-based
reuse is crucial to Web Engineering, the development of adaptive Web applications of such
components is typically a complex task that requires systematic process models and appropri-
ate tool support [Fiala et al. 2004b]. Therefore, this chapter deals with the authoring process
of component-based adaptive Web presentations and its tool support?.

Independent of a given application domain, the proposed document model supports dif-
ferent Web application scenarios. Consequently, the resulting authoring process should not
be bound to a fixed process model or workflow, rather adjusted to the specific requirements
of the targeted application area. These requirements may vary depending on various factors,
such as the application’s type (e.g. static adaptive hypermedia presentation vs. data-driven
dynamic Web application), its targeted user group, size, complexity, etc. As a trivial ex-
ample, consider the case of a Web author aimed at the rapid development of a small set of
Web pages presenting static content on different end devices. He could be best suited by an
ad-hoc authoring process allowing to visually create adaptable content components and “plug
them together” to a set of Web pages. On the contrary, the development of a dynamic Web
Information System providing different features of adaptive navigation and presentation is a
significantly more complex Web engineering task. It should be based on a systematic process
model that considers separate concerns of the planned application (data, navigation, presen-
tation, personalization, device and context dependency, etc.) in a structured way. Thus, to
facilitate different development scenarios, there is a need for flexible authoring support.

The first part of this chapter (Section [5.1) deals with the structured authoring process
of component-based adaptive Web presentations. However, instead of suggesting an own
methodology, the chosen strategy is the adoption of existing hypermedia design methods
for this purpose. The main reason behind this approach is the observation that, given the
abstraction gap between high-level hypermedia design models and low-level implementation
entities (document components), even different methodologies can be utilized to develop
component-based adaptive Web applications [Fiala et al. 2004b]. This thesis focuses on an

"Winston Churchill (1874-1965)

2As discussed in Section [3.1, the overall life-cycle of adaptive Web applications encompasses different
activities, such as requirements engineering, design, implementation, testing, or maintenance. While the
author is aware of the importance of all related activities, the focus of this dissertation (and thus this chapter)
is on the model-based design and component-based implementation of adaptive Web sites.

95

Chapter 5. The Authoring Process and its Tool Support

important development scenario: the engineering of data-driven Adaptive Web Information
Systems (AWIS) from reusable components. Therefore, it adopts and extends the model-
based Hera Web design method [Vdovjak et al. 2003] to the context of component-based
Web engineering. The resulting design methodology and engineering process is called Hera-
AMACONT and supports the structured development of adaptive Web information systems
from reusable components. Considering the steps identified by the Hera design models as a
guideline, it is shown how component authors can systematically create, configure, aggregate,
and link document components (and templates) to complex adaptive Web presentations.
It is illustrated how different design issues concerning data, navigation, presentation, as
well as their related adaptation concerns can be taken into account at implementation in a
structured way. Thus, a possible model-based authoring process is proposed for the developers
of component-based adaptive Web presentations.

In order to efficiently put a given design or authoring process (such as the one dictated
by Hera-AMACONT) into practice, component authors need appropriate tools for creating,
configuring and aggregating components. To this end, the second part of this chapter (Sec-
tion [5.2)) introduces the AMACONTBuilder, a modular authoring tool for the developers of
component-based Web applications. Based on an extensible set of graphical editor modules,
it allows to visually create, configure, and aggregate adaptive document components on dif-
ferent abstraction levels. Moreover, it also facilitates the creation of component templates,
thus allowing to author data-driven adaptive Web presentations. Independent of a specific
methodology, it is shown how it can facilitate different authoring workflows. Finally, selected
implementation and extensibility issues are also briefly presented.

While the AMACONTBuilder facilitates flexible component authoring (implementation)
independent of a specific design method, in some cases it is desirable to take a further step
from model-based component authoring to model-driven component generation and to add
automation to the overall process of design and component-based implementation. There-
fore, the third part of this chapter (Section 5.3) deals with the research question of how
a component-based implementation can be automatically generated on basis of a high-level
design specification in a model-driven way. Again, this is illustrated by example of the Hera-
AMACONT methodology. After identifying main automation requirements, an RDF(S)-
based formalization of the presentation design phase of Hera-AMACONT is provided. Ac-
cording to this formalization, high-level model specifications can be automatically mapped
to a component-based implementation, thus exploiting its flexible presentation and adapta-
tion capabilities. The resulting multi-stage development process and document generation
architecture are described in detail and exemplified by a prototype application.

Finally, Section /5.4 summarizes the resulting multi-stage Web engineering process and
provides a representative overview of already realized component-based adaptive Web appli-
cations.

5.1 Hera-AMACONT: Model-based Component Development
based on a Hypermedia Design Method

In recent years, different methodologies facilitating the structured design of complex Web
applications have been developed. A detailed overview of the most significant existing ap-
proaches was given in Chapter 3. As discussed there, most of them distinguish between the
conceptual design, the navigational design, and the presentation design of a Web applica-
tion. Furthermore, some of them even explicitly address selected issues of personalization
and adaptation.

96 © Copyright TU Dresden, Zoltan Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

This section adopts the model-based Hera design method [Vdovjak et al. 2003] to the
context of component-based Web engineering. The resulting design methodology and engi-
neering process is denoted as Hera-AMACONT and supports the structured development of
data-driven adaptive Web applications (e.g. online-shops, e-galleries, etc.) from reusable im-
plementation artefacts. Note that Hera is suitable for this undertaking for different reasons.
First, its main focus lies on the specification of different kinds of adaptation in a Web In-
formation System [Frasincar et al. 2002]. Besides aspects of adaptability (static adaptation),
issues of adaptivity (dynamic adaptation) are also concerned [Frasincar 2005]. Second, Hera
uses Semantic Web technologies (RDF and RDFS) to explicitly formalize model descriptions.
Such a Semantic Web-based approach has a number of benefits: a more explicit description of
model semantics, better interoperability and (possibly) model verification support, as well as
the possibility to integrate existing ontologies. Furthermore, due to the usage of XML-based
models, an automatic translation of high-level Hera design models to a component-based im-
plementation appears to be also possible. Finally, in contrast to several other methodologies,
Hera foresees to specify the presentation aspects (layout, look-and-feel) of a Web application
at model level.

Therefore, based on a small running example, different phases of designing and imple-
menting component-based adaptive Web presentations are described. Considering the steps
identified by the (extended) Hera design models as a guideline, it is shown how component
authors can apply those concepts to systematically develop adaptive Web presentations out
of reusable document components. The main focus is on the question of how different adap-
tation issues (both static and dynamic) can be targeted in each design and implementation
step.

5.1.1 Conceptual Design

The first step of the Hera design method is the so-called conceptual design aimed at represent-
ing the application domain using conventional conceptual modeling techniques. It results in
the conceptual model (CM) consisting of a hierarchy of concepts, their attributes, and relation-
ships. A concept represents a certain entity in a particular application domain. It is further
characterized by concept attributes, each being typed. Besides basic types (e.g. Integer
and String), multimedia types (e.g. Image, Audio, Video) are also allowed, thus enabling
to assign representative media items to concept attributes. The CM can be expressed both
graphically and using RDFS |[Brickley and Guha 2003]. For the graphical specification of
conceptual models, Hera provides appropriate modeling tools [Frasincar 2005].

The example application used throughout this chapter is a (small part of a) Web In-
formation System providing information on painters, their paintings, and painting tech-
niques [Fiala et al. 2004b, QICWE2004Demo|. An excerpt of its underlying conceptual model
is depicted in Figure [5.1.

The concepts constituting the application domain are illustrated as dark ellipses. They
contain concept attributes denoted as light ellipses. As an example, the concept technique
(representing painting techniques) has two attributes: a name and a description. Concepts
are related to each other by typed concept relationships. For instance, a painting technique
is associated to a set of paintings, all inheriting from the concept artifact. This is an 1:n rela-
tionship of the type exemplified_by. A painting (since inheriting from the concept artifact) is
characterized by its name, the year of its creation, and a corresponding picture. Furthermore,
via the relationship painted_by, paintings are associated with painters that again inherit from
the abstract class creator.

© Copyright TU Dresden, Zoltan Fiala 97

Chapter 5. The Authoring Process and its Tool Support

creator

artifact

exemplified_by created_by

e

subClassOf subPropertyOf subClassOf

painting

painted_by

Figure 5.1: CM example [Fiala et al. 2004a]

The media types associated to the concept attributes are described in the Media Model
(MM), a submodel of CM [Fiala et al. 2004a]3. It is a hierarchical model composed of media
types. The most basic media types are: Text, Image, Audio, and Video. Figure 5.2 shows an
excerpt of the MM for the running example. The media types are depicted in dark rectangles.

subClassOf / subClassOf

Largelmage ‘ ‘ Smalllmage

LongText ‘ ‘ ShortText ‘
condition™ ~ - conditiorl\,\/"‘:\ condition P ~ condition
s - AT
‘ prf:client=PC ‘ ‘ prf:client=PDA ‘

Figure 5.2: MM example |[Fiala et al. 2004a]

5.1.1.1 Adaptation at Conceptual Design

The Media Model aims not only at the assignment of media types to concept attributes,
it also allows to define media adaptations. These are based on simple Boolean expressions
(depicted as light rectangles in Figure [5.2) that reference attributes from the current usage
context and dictate the conditional usage of different media types.

In the running example, two conditions addressing the limited screen size constraints of
mobile client devices are used. One condition requires to use a long text for the technique

3Frasincar also refers to the Media Model as the so-called media vocabulary [Frasincar 2005

98 © Copyright TU Dresden, Zoltan Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

description and a large image for the artifact pictures on PCs. The other condition stipulates
that a short text for the technique description and a small image for the artifact pictures
should be used for PDAs. While in this particular example both conditions specify adapt-
ability (i.e. adaptation based on context parameters that are typically static with regard to
a Web session), note that media adaptations can be performed dynamically, as well. As an
example, the designer could specify different quality alternatives for a video depending on
the currently available bandwidth. Thus, in case of possible bandwidth fluctuations (e.g. in
a mobile environment), the usage of a given alternative could be dynamically reconsidered
even during a single browser session.

We note, however, that this adaptation of the media representation of concept attributes
concerns not only the data presented by a Web application (which is the actual focus of
conceptual design) but also its presentation. The reason for this is the fact that a media
object (e.g. an image) represents not only content but also inevitably presentation. As a
consequence, the media model of a Web application might be reconsidered or extended after
specifying its presentation design (in a later design step, see Section 5.1.5). Therefore, we
claim that the design of a Web application might be an iterative approach, allowing to refine
the separate design models in several turns.

5.1.2 Realization with Document Components

When developing adaptive Web presentations from document components, the conceptual
design step as proposed by Hera has to be accompanied by the creation or retrieval of media
instances that represent the identified concept attributes. These media instances (as well as
the metadata attributes required by the component-based document format for describing
their media properties) have to be stored in a structured data store so that they can be
dynamically presented in the resulting adaptive Web application. The structure of this data
source is to be derived from the CM, respectively. Furthermore, the appropriate media
component templates facilitating the dynamic presentation of the created media instances
have to be created.

In order to realize different media adaptations, component authors also have to reason
about alternative media instances with different quality (e.g. concerning their formats, band-
width, color depth, bit rate, size, etc.). According to Section 4.3.1, these alternatives have
to be defined as media component (template) variants with their corresponding selection
methods. For instance, a media component representing a painting’s picture should have two
variants, one for desktop devices and another one for handhelds.

5.1.3 Application Design

The application design step of Hera is the most important design phase dealing with the log-
ical, structural, and navigational aspects of a Web application. Similar to the navigational
models of other methodologies, its main goal is the specification of the overall hyperme-
dia structure of the resulting application, i.e. the design of navigational units (hypermedia
nodes and pages), their relationships (aggregation and interlinking), as well as corresponding
adaptation issues?.

“Recently, Hera’s application model was extended by mechanisms for the specification of form-based
user interactions [Frasincar 2005]. Still, the concepts described here focus on the basic Hera models, as also
published in [Fiala et al. 2004b, [Fiala et al. 2004a]. It is claimed that the mentioned extensions are adoptable
for the context of component-based adaptation engineering, which is subject to ongoing cooperation.

Copyright TU Dresden, Zoltan Fiala 99
© Copyrig ;

Chapter 5. The Authoring Process and its Tool Support

In order to model navigational units, Hera uses the notion of slices. As in the case
of RMM, a slice is a meaningful presentation unit that fulfills a certain communication
purpose [Isakowitz et al. 1995], i.e. it represents an abstract view over the content described
in the conceptual model that should be shown on a hypermedia node.

A slice is always associated with its owner concept which denotes the data (i.e. the concept
from the CM) portrayed by it. Furthermore, there are two types of slice relationships: slice
navigation (a hyperlink abstraction between two slices) and slice aggregation (a slice including
another slice). An aggregation relationship between two slices with different owner concepts
needs to specify the concept relationship between those concepts from the CM that made
such an embedding possible. In the case that the cardinality of this concept relationship is
one-to-many, the Set construct needs to be used. The most primitive slices represent concept
attributes and are also referred to as simple slices. Slices that aggregate other slices are called
complex slices. The most complex ones (called top-level slices) correspond to pages, which
contain all the information presented on the user’s display at a particular moment. The
creation of AMs is provided by graphical tool support. For a more thorough introduction to
Hera’s application model vocabulary the reader is referred to [Frasincar 2005].

painting

|
painted_by

hyperlink

Figure 5.3: AM example

Figure 5.3 depicts (a small excerpt of) the application model of the running example
in a graphical way. It consists of two top-level slices, one presenting painting techniques,
the other paintings. As indicated by the underlying dark ellipse, the left top-level slice is
associated with the concept technique. It shows two attributes of that concept: its name
(tname) and description (description). Furthermore, it also contains a link list pointing to
the paintings exemplifying the given painting technique. As depicted in the picture, these
links are based on the concept relationship exemplified_by. The starting anchor of each link
is represented by the picture attribute of the referenced painting concept. Since there are
several paintings associated with a technique, a Set construct is used. When following a
link, the user can navigate to the corresponding painting slice, a composite (top-level) slice
presenting the concept painting. This slice presents the actual painting’s picture, its name,
the year when it was painted, as well as (from the bottom slice) some information about
its painter. Note that besides the graphical representation (called the Application Diagram)
there exists also an RDFS-based formalization of the AM [Frasincar et al. 2002].

100 © Copyright TU Dresden, Zoltan Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

5.1.3.1 Adaptation at Application Design

Adaptation at application design concerns the adjustment of the Web presentation’s logical
and navigational structure to the user and his usage context. Generally, different adaptation
issues can be considered in the AM. First, it is meaningful to adjust the coarse navigational
structure to varying device capabilities (e.g. desktop computer, PDA, cell phone, etc.) or user
profiles (preferences, interests, knowledge). Depending on this information the designer can
decide which concepts should be presented at all and how they should be assigned to different
interlinked slices. Second, the population of each specified slice with concept attributes (or
media types) can be adjusted, too. According to the preferences and/or used devices of
different users, different media types for presenting the same concept can be utilized. As
an example, take the case of two visitors, one of them preferring multimedia content, the
other rather textual information. When presenting a painter’s biography, the first one could
be shown a video and an audio sequence, the second one a detailed textual description.
Furthermore, dynamic adaptation (adaptivity) can also be targeted at this step. For example,
different versions of a painter’s biography could be presented in accordance with the user’s
changing knowledge on that painter: a long version at the user’s first visit and a short one
at his later visits. As a matter of course, these are only possible adaptation examples, the
consideration of a certain adaptation concern (device dependency, personalization, security,
etc.) depends on the designer’s choice.

In order to specify adaptation, Hera prescribes that one associates so-called appearance
conditions to slices [Frasincar et al. 2002, Frasincar 2005]. These are Boolean conditions
using attribute-value pairs from the current usage context. Two kinds of AM adaptation are
enabled: conditional inclusion of slices and link hiding. Conditional inclusion means that a
slice is included (and therefore visible) when it has a valid condition. Similarly, link hiding
refers to the mechanism that a link is only included when its destination slice is valid.

Figure 5.4/ depicts another version of the application model shown above which is enriched
by adaptation definitions. Note that it contains three appearance conditions. The first
one (mentioning ExpertiseLevel) supports adaptability by including the painting technique’s
description only for Experts. The second one (mentioning imageCapable) refers to the device
profile and dictates that the pictures of paintings should be only shown on devices being
capable of presenting images. The third one (mentioning biography) defines adaptivity by
presenting different versions of a painter’s biography depending on the user’s knowledge on
that painter.

5.1.4 Realization with Document Components

There are important analogies between (the concepts of) Hera slices and adaptive document
components. Both represent meaningful presentation units bearing also some semantic role
(e.g. painting, painting technique, newspaper article) and are recursive structures enabling an
arbitrary deep hierarchy. Moreover, both top-level slices and top-level document components
correspond to hypermedia pages to be presented on the user’s display. Furthermore, both
may contain adaptation issues according to context model parameters.

Nonetheless, there are also significant differences. First, in contrast to slices, document
components also contain information describing their layout. However, as application design
concentrates on the navigation and does not deal with presentation issues, the specification
of these layout properties can (and should) be postponed to a later stage of the development
process (see Section [5.16). Second, whereas AM slices define the structure of presented con-
cepts on the schema level (i.e. independent of concrete instances of those concepts), document

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 101

Chapter 5. The Authoring Process and its Tool Support

ExpertiseLevel=Expert imageCapable=yes
4

technique painting

Cpicture>
=

hyperlink painted_by painted_by

exemplified_by

Biography=true ‘ ‘ Biography=false ‘

Figure 5.4: AM example with appearance conditions

components represent reusable implementation entities on the instance level. Still, note that
this gap can be bridged by considering the notion of component templates. As described in
Section 4.4/ in detail, these are component skeletons declaring the structural, behavioral, and
layout aspects of components independent of their concrete content. For example, a com-
ponent author might create a component template for presenting dynamic information on
painters. Such a template can be instantiated for specific painters by dynamically querying
the Web application’s underlying data source, which was created accompanying its conceptual
design.

The mentioned analogies allow component authors to specify the aggregation hierarchy
of component templates in accordance to a given AM design. First, top-level slices have to
be mapped to top-level document component templates. Second, by unfolding slice aggre-
gation relationships in a top-down manner, subslices have to be mapped to “sub document
components” (or templates). In the case of simple slices, the media items (components)
representing the concept attributes associated with those slices have to be additionally con-
sidered. Furthermore, both Set structures (of simple and composite slices) as well as slice
navigation relationships (e.g. link lists) have to be taken into account. While there are dif-
ferent possibilities to map slice hierarchies to component template structures, we mention a
straightforward and easily automatable one:

1. A complex slice that contains other (complex or simple) subslices should be mapped
to a document component template. For its aggregated subslices, this mapping process
should be performed recursively. As already mentioned, top-level slices correspond to
top-level document components.

2. A simple slice (representing a concept attribute) has to be mapped to a document
component template that additionally contains a content unit that again contains one
or more media component templates. These media components correspond to the media
items representing the slice’s owner concept attribute, their types have to be determined

102 © Copyright TU Dresden, Zoltan Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

by the media type(s) associated with that concept attribute in the Media Model (MM).
Integer and String attributes have to be mapped to text components, media attributes
to corresponding media components (image, audio, video, etc.).

3. Whenever a slice (complex or a simple) is part of a Set construct, the appropriate
component template that was assigned to it should be defined as an iterative template.

4. Finally, slice navigation relationships between two slices have to be mapped to hyper-
link components between the appropriate component templates. Again, when a slice
navigation relationship is based on a 1:n concept relationship, an iterative hyperlink
list has to be configured.

Figure[5.5/depicts this possible mapping process in a graphical (schematic) way by example
of the slice representing painting techniques. The types of the created component templates
are denoted by the abbreviations MC (media component), CU (content unit component)
and DC (document component). Furthermore, the mappings are illustrated as arrows, each
labeled by a number indicating the appropriate mapping rule from the above list.

Hera Application Model Component Templates

(TechniqueComp l DC
Technique

technique

[TechniqueTNameComp | DC)
TechniqueTName

f MediaContainer | CU]
TextComp MC

tname

(PaintingPictureComp | DC)
PaintingPicture

y

> iterative="yes”

MediaContainer CuU

\

ImageComp MC

Figure 5.5: Slice to component template mapping

If the AM specifies adaptation aspects via appearance conditions, these have to be ex-
pressed in form of corresponding component variants and their selection methods (see Sec-
tion 4.3.1). Again, this can be done in a straightforward way. Whenever a slice is provided
with a Boolean appearance condition, the component associated to it has to be made a vari-
able component containing only one variant. Moreover, according to the slice condition a
selection method in the TF-THEN style has to be composed (see Section 4.3.1). Note, how-
ever, that the concept of adaptation variants supported by the component-based document
model allow for more sophisticated kinds of adaptations than simple appearance conditions
attached to navigational elements. To optimally address different client capabilities or user
preferences, component authors might flexibly define different variants of the created compo-
nent templates on all abstraction levels.

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 103

Chapter 5. The Authoring Process and its Tool Support

Furthermore, whenever a given adaptation specification concerns adaptivity, component
authors also have to reason about how to update context model parameters according to users’
interactions. For this purpose the context modeling components of the document generation
architecture can be utilized (see Section [4.5.3). For instance, the number of a user’s requests
to a document component instance (e.g. representing a painter’s biography) can be easily
tracked in the Session Profile (see Section 4.5.2). This information can be utilized to define
the appropriate component variants and their corresponding selection methods.

5.1.5 Presentation Design

The presentation design step of Hera bridges the logical level and the actual implementation
by introducing the implementation independent Presentation Model (PM). Complementary
to the AM, where the designer is concerned with organizing the Web application’s overall
structure and identifying which concept attributes from the entities of the application domain
should be included in slices, the PM specifies how and when the identified slices should be
displayed.

T painting
painter

Figure 5.6: Presentation diagram (PD) example: assigning regions to slices

The PM is described by a presentation diagram (PD) consisting of regions and their
relationships. A region is an abstraction for a rectangular part of the display area where
the content of a slice is to be displayed. During presentation design, the slices introduced
in the AM are mapped to regions (and subregions). The PD specifies the organization of
regions in an informal, graphical way by means of region relationships that describe their
relative position (e.g. above, below, left/right from) to each other [Frasincar et al. 2001]. As
an example, Figure 5.6/ depicts a possible presentation diagram assigned to the painting slice
(see Figure 5.3). It dictates to display a painting’s name, picture, year, and painter below
each other and arranges the name and biography attributes of the painter in a horizontal
manner.

Note that at the time when the work described in this chapter was carried out there was
no RDF-grammar for expressing PDs in a formal way, nor were style design and adaptation
considered in the PM. These issues were addressed in form of the Hera-AMACONT model ex-

104 © Copyright TU Dresden, Zoltan Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

tensions as part of the work presented in this thesis [Fiala et al. 2004a, Fiala et al. 2004b] and
will be described here, respectively. In the following subsection different issues of presentation
layer adaptation as well as a possible component-based realization of the presentation design
step are discussed. An RDF(S)-based formalization of the corresponding Hera-AMACONT
PM will be provided later in Section [5.3.1.

5.1.5.1 Adaptation at Presentation Design

As personalization and adaptation become prominent issues of Web engineering, it is in-
evitable to address adaptation at presentation design. Still, while adaptation has been ex-
tensively considered in navigation design (see Chapter 3), adaptation in the presentation
layer has not been a central issue of Web design methodologies, yet. Nevertheless, it is in a
lot of scenarios necessary to adjust a Web application’s presentation aspects. As the most
significant issues the following can be mentioned:

1. Animportant adaptation target is the spatial placement (layout) of the content elements
of a Web page. Depending on varying user preferences and/or device characteristics
(e.g. screen size, supported document formats, interaction techniques, etc.), they should
be displayed differently. Possible layout adaptation techniques are:

Reorganization: In this case the arrangement of content elements is adapted. Most
typically, the purpose of this adjustment is to optimally fit a Web presentation
to the varying display sizes of different client devices. Whereas for example the
tabular arrangement of content may look well on conventional desktop comput-
ers, it could cause a lot of undesirable horizontal scrolling when being browsed on
handhelds with limited display size. Similarly, the writing scheme of a Web presen-
tation’s language (e.g. left-to-right, right-to-left, horizontal, or vertical) can also
significantly influence the arrangement of content elements like headers, footers,
navigation bars, etc. [Evers and Day 1997].

Exclusion: Information being unsuitable for a particular browser (e.g. a picture gallery
for a monochrome mobile phone) or content elements without an important se-
mantic meaning (e.g. company logos in an online shop) can be excluded from Web
presentations on mobile devices with small displays or low bandwidth connections.

Separation: As a (less strict) form of exclusion, it can be advantageous to put certain
content pieces onto separate pages and automatically create hyperlinks to them.
This mechanism is very useful to keep the structure of Web pages while providing
a lot of information easily understandable on handhelds [Hwang et al. 2002].

2. A further adaptation target is the corporate design (i.e. the “look-and-feel”) of a Web
application, which is typically determined by decorative elements such as logos, back-
ground colors, font parameters (size, color, type), buttons, etc. Though not influencing
the logical structure of a Web site, such design elements are important to appropriately
convey the published information to the user. Consequently, presentation designers
might provide alternative style variants in order to address different user properties
and usage contexts. As possible adaptation aspects the following can be mentioned:

Style preferences: The visitors of a Web presentation might have different style pref-

erences based on their interests, education, and/or age. While e.g. a site addressing
little children typically utilizes vivid colors and decoration elements [Nielsen 2002],

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 105

Chapter 5. The Authoring Process and its Tool Support

Web applications targetting a more “serious” audience are characterized by rather
modest and simple layouts.

Cultural background: The cultural background of the targeted audience is also an
important presentation adaptation feature. Barber and Badre provide an overview
of so-called cultural markers, i.e. “interface design elements that are prevalent, and
possibly preferred, within a particular cultural group” [Barber and Badre 1998].
As an example, specific color combinations, symbols, or decoration elements can
have varying interpretations in different countries and cultures.

Accessibility issues: A further adaptation aspect to be considered at style design
is accessibility. In order to appropriately address users with visual impairments
(limited level of sight, color blindness, etc.), it requires to offer Web presentations
with different color schemes, font types, and sizes. The World Wide Web Consor-
tium (W3C) tackles this issue by offering a number of Web Content Accessibility
Guidelines [Chisholm and Vanderheiden 1999] for Web designers and developers.

Environment characteristics: Web applications developed for mobile scenarios might
adapt their visual appearance based on selected characteristics of the current en-
vironment. As an example, the contrast or brightness of a Web page might be
adjusted to whether the user is situated in an indoor or anoutdoor context.

Specific events or time periods: Finally, the corporate design of a Web site might
be also adjusted to specific events or time periods, such as seasons, anniversaries,
or festivals. As a typical example, Web-based online shops or communities are
often decorated with a dedicated layout at festivals like Halloween or Christmas, at
Valentine’s day, or even during sport events like e.g. football world championships.

3. Third, the qualitative adjustment of the media objects included in a Web site (e.g. to
the display capabilities of different end devices) is also an important adaptation issue
to be considered at presentation design. Still, since the assignment of media types to
the application’s conceptual model is specified in the already presented Media Model
(see Section 5.1.1.1), these adaptations should be also defined there, respectively. As
already mentioned, the adaptation definitions concerning the media model might be
modified or extended at presentation design.

4. The aforementioned examples represent static adaptation. However, in some cases it
is meaningful to consider dynamic adaptation, i.e. adaptation according to parameters
that may change while the Web presentation is being browsed. As a possible scenario (in
presentation design) we mention the dynamic reorganization of presentation elements
on a page when the user resizes his browser window or the automatic reconfiguration of a
Web presentations color scheme (colors, contrasts, brightness) when a mobile user enters
a differently illuminated area (e.g. changing from an outdoor to an indoor context).

5.1.6 Realization with Document Components

The aggregation hierarchy of component templates was determined at application design.
Now, based on the guidelines of the graphical presentation diagram, component authors are
expected to specify the layout attributes of those component templates as well as the cor-
porate design of the resulting presentation. Furthermore, to address the possible adaptation
issues mentioned above, they also have to consider layout and design style variants.

106 © Copyright TU Dresden, Zoltan Fiala

5.1. Hera-AMACONT: Model-based Component Development based on a Hypermedia Design Method

As mentioned in Section 4.3.2, the component-based document format provides an XML-
based mechanism for specifying the spatial adjustment of subcomponents within their con-
tainer components in a size and client-independent way. Those abstract layout definitions
support the automatic conversion of component structures to Web presentations in different
output formats and are well suitable for implementing an abstract presentation design con-
sisting of a hierarchy of rectangular regions. Consequently, the spatial relationships between
regions defined in the PD have to be mapped to such component layout descriptions.

Again, this mapping can be performed in a straightforward way. Beginning at top-level
document component templates and visiting their subcomponents recursively, one has to
declare for each component template how its immediate subcomponents are arranged. As an
example, the component templates containing the concept attributes describing a painting
(see in Figure 5.6) can be arranged according to a vertical BoxLayout scheme. Similarly, the
name and the biography attributes of the corresponding painting’s painter can be organized
based on a horizontal BoxLayout. When defining such layout managers, component authors
can use their various configuration options (widths, heights, alignments, etc.) which were
described in detail in Section 4.3.2.

The corporate design of a component-based presentation can be specified by the cre-
ation and configuration of corresponding CSS media components. The CSS standard of the
W3C [Bos et al. 2006, Lie 2005] allows for the definition of a Web presentation’s design and
style elements (background colors, font sizes and types, link colors, etc.) and is thus perfectly
suitable for this purpose. A CSS media component contained by a composite document com-
ponent specifies the corporate design of the content it displays. Whenever there are several
CSS components in a component-based Web document, they can redefine each other’s style
definitions by the order of their occurrence in the overall component hierarchy.

In order to cope with the adaptation issues described in Section/5.1.5.1, component authors
might create different layout variants for components, each bound to a specific adaptation
condition. For instance, the typical small display size and horizontal resolution of handheld
devices would require to present not only the attributes of a painting, but also the names and
the biographies of their painters below each other (i.e. according to a vertical BoxLayout
scheme). Similarly, the corporate design of a component-based presentation can be also
adapted by specifying different CSS media component variants and their selection methods.

After this authoring step, the content, the structure, and also the layout layout managers
of the resulting components (templates) are fully specified. They manifest a component-based
implementation of the corresponding design models.

5.1.7 Summary

This section exemplified the development process of component-based adaptive Web presenta-
tions according to the design phases dictated by the model-based Hera design method. Based
on a small example application, it was shown how during the phases of design and implemen-
tation different application concerns (content, navigation, presentation) as well as correspond-
ing adaptations (both static and dynamic) can be taken into account systematically. That
is to say, a possible model-based authoring process for the developers of component-based
adaptive Web presentations was introduced®. As a short summary, Table /5.1 recapitulates
the identified design steps, their “implementation recipe” based on adaptive Web document
components, but also the adaptation issues to be addressed in each development phase.

5A summary of component-based Web application prototypes realized based on the authoring process and
tool support described in this chapter will be given in Section [5.4.2.

© Copyright TU Dresden, Zoltan Fiala 107

Chapter 5. The Authoring Process and its Tool Support

Design & Modeling

Component-based
Implementation

Conceptual
Modeling

CM Adaptation

specification of the
application’s domain model

adaptation of media quality

creation, retrieval and structured
storage of media components
representing concept attributes

creation of media component
variants with quality alternatives

Application
Modeling

AM Adaptation

design of the application’s
navigational structure by
slices and slice relationships

adaptation of slice
aggregation and navigation

creation and interlinking of composite
components (content units, document
components) and templates

definition of alternatives for subcom-
ponents and hyperlink structures

Presentation
Modeling

PM Adaptation

design of the user interface
based on regions and
style definitions

design of layout and style
adaptation

definition of components’ layout
managers and CSS styling

definition of alternative layout
managers and CSS components

Table 5.1: Summary of design and implementation phases

The mentioned development steps facilitate a structured design and implementation pro-
cess for component-based adaptive Web presentations. The resulting component templates
constitute a dynamic component-based hypermedia presentation realizing the different design
(and adaptation) issues expressed by the corresponding design models. Consequently, they
can be used as the input of the pipeline-based document generator introduced in Section [4.5.
As described there, for each user request the corresponding component template is retrieved
and instantiated with the requested data. According to the current usage context, it is then
subdued to a series of transformations, each considering a certain adaptation aspect. The
resulting Web presentation is automatically adjusted to the actual usage context.

Note, however, that the development process presented in this section is only one possible
approach for data-driven component-based adaptive Web applications. As mentioned before,
the abstraction gap between design methods and implementation entities (components) allows
to use different methodologies for developing component-based adaptive Web sites.

5.2 A Modular Authoring Tool for Component-based Adap-
tive Web Applications

As illustrated in the previous section, the component-based document format and its docu-
ment generation architecture provide a sound basis for the development and publication of
adaptive Web presentations. Based on a structured authoring process (e.g. Hera-AMACONT),
authors can compose adaptive Web applications from reusable components in a disciplined
way, by subsequently taking into account different design concerns, their adaptation issues, as
well as their corresponding “implementation recipes”. Still, the complexity of the component-
based document format’s underlying XML grammar calls for an intuitive authoring tool that
supports this composition process in a graphical way. Such an authoring tool should provide

108 © Copyright TU Dresden, Zoltan Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

following functionality:

1. Visual authoring support: The authoring tool should offer graphical editor mod-
ules for the creation, configuration, and composition of document components. These
should hide the low-level details of the XML-based component description language
from authors, allowing to create component-based documents in a visual way.

2. Independent authoring of separate concerns: The authoring tool should provide
a number of specialized editors allowing to separately configure different component
properties (such as content, structure, layout, interlinking, adaptation) in different
phases of the authoring process.

3. Support for instance- and template-level authoring: The authoring tool should
facilitate the creation of both component instances and component templates. For
the latter case it should allow authors to intuitively access dynamic data sources and
configure the appropriate queries.

4. Preview functionality: In order to allow authors to test the currently created/edited
documents, the authoring tool should provide a flexible preview functionality depending
on the actual user, context, and device characteristics.

5. Flexible authoring workflows: Instead of being bound to a specific authoring pro-
cess (e.g. the one presented in Section [5.1)), the authoring tool should provide a flexible
set of editor modules for the manipulation of different component types and properties.
Authors should have the freedom to flexibly use these editors based on the current
authoring scenario, thus being able to proceed based on different process models.

6. Extensibility: To cope with the flexibility and extensibility of the component-based
document format (see Section 14.6.3)), the authoring tool should also be based on a
modular and extensible architecture. This should facilitate to integrate both alternative
editor modules for existing and new editors for future component types.

To fulfill these requirements, a graphical component authoring tool called the AMACONT-
Builder was developed [Fiala et al. 2005]. It is based on an extensible set of visual editor
plug-ins and allows to graphically create and compose document components on different
composition levels. Furthermore, it also supports the configuration of both their adaptation
variants and adaptive layout. Note, however, that as a tool designated for component author-
ing, the AMACONTBuilder is oriented at the phase of (component-based) implementation
in the overall Web engineering process (see Section 3.1). That is to say, instead of being
bound to a specific methodology (e.g. Hera-AMACONT), it allows to compose adaptive Web
components based on different authoring processes®.

This section gives an introduction to the AMACONTBuilder. First, its basic concepts
and main architecture is presented. Then, selected editor modules are described in more
detail, supporting different phases of the authoring process of component-based adaptive
Web presentations. Finally, a couple of implementation issues are briefly summarized.

5The issue of the model-driven generation of component-based adaptive Web applications based on Hera-
AMACONT models will be subject to Section 5.3l

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 109

Chapter 5. The Authoring Process and its Tool Support

5.2.1 AMACONTBuilder: An Overview

The AMACONTBuilder is a modular authoring tool aimed at the visual development of
component-based adaptive Web applications. It is based on an extensible authoring frame-
work [Chevchenko 2003] that allows to edit arbitrary XML documents. The framework was
developed at the Chair of Multimedia Technology of the Dresden University of Technology
and provides generic functionality for parsing XML files into and internal object model, as
well as for implementing editor plug-ins dedicated to specific object model (XML) elements.
Thus, it can be easily extended by graphical editor modules (plug-ins) to visually author
content based on a given XML grammar. Previously, the framework was successfully utilized
for the development of courseware in the CHAMELEON project (see Section 3.2.5).

As shown in Figure 5.7, the user interface of the AMACONTBuilder consists of two main
parts: the application frame and the document frame. The application frame provides generic
functionality for configuration options and file management. It is responsible for parsing
XML-based documents to an internal object model, for assigning editor plug-ins to parts of
this object model, and for serializing the modified object model to XML, respectively. It
contains the document frame showing the currently opened (edited) document. This is again
divided into two parts: the navigation frame and the editor frame.

-Iojx

Dokument Bearbeiten Anzeigen Einfiigen Tools Fenster Hife

N R E R EEE R

AdaptationEditor ML Editor |

BlOmyO[=lide <> O«
33 < f == B top navigation SHHEHHEEEEAREE >
34 <ace;: BmaSetComponent nswe="top_nav" laver="DocwmentComponsnt>
35 <aco:MetaInformation>
36 <amet :LayoutProperties>
<alay:LayoutManagexr:
<alay:OverlayLayout:
<alay:ComponentRef pos x="10px" pos y="Spx">top nav_txt<ls
Hyperlinks <alay:ComponentRef pos_x="Opx" pos_y="Opx" uml_visible="f:
C:;f::smn’ a «<falay:0verlayLayout>
projekt_hes <falay:LayoutManager:
Variants <famet:LayoutProperties>
\3in_gruss <faco:MetaInformations>
Variants <aco:SubComponents xsi:type="aco:SetSubCowponentsType” xmlns:xsi="http: i

in_kslender
[nav <aco:ZmaListComponent name="top nav_txt" layer="ContentUnit"=

=] Variants <aco:MetaInformation>

Logic A <amet:LayoutProperties>
desktop_naw

- 1 handheld_nav <alay:Layoutianager:

<alay:BoxLayout =xis="yAxis">
<alay:ComponentRef>top_navl</alay:ComponentRef:
<alay: ComponentRef>top_navi</alay:ComponentRef>
<falay:BoxLayout>
<falay:LayoutManagexr>
<famet :LayoutProperties>

«faco:MetaInformation>

[l —

< | B

Schemavalidation: ist nicht aktiv,

Figure 5.7 AMACONTBuilder overview [Fiala et al. 2005]

The navigation frame on the left provides a tree-based view on the node (component)
structure of the currently edited document. When navigating through this component hi-
erarchy, the specific editors assigned to the appropriate component types are automatically
activated in the editor frame (shown on the right). While in Figure 5.7 the navigation frame
shows the overall component hierarchy of the edited document, it is possible to use predefined
filters. For instance, an author aimed at the creation and configuration of image components

110 © Copyright TU Dresden, Zoltan Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

has the possibility to display only the corresponding components and filter out all other ones.

Finally, the editor frame provides space for the actual editor plug-ins associated to dif-
ferent node (or component) types. It displays the editors associated to the currently edited
component (chosen in the navigation frame). A component type might be associated with
several editor modules. As an example, content unit components and document components
have both editors for manipulating the aggregation of their subcomponents as well as their
layout. In this case all corresponding editors associated with the actual author role are shown
as separate panes and can be activated by the author, respectively. The assignment of editors
modules to component types is determined by an XML-based configuration file that can be
individually set for different authoring scenarios.

While there are editor modules being applicable to all kinds of XML content (e.g. the XML
code editor shown in Figure5.7)), most modules are assigned only to specific node (component)
types and are thus activated at well-defined phases of a given authoring process. The following
sections give a short overview of the most important existing editor modules. According to
the main steps of the authoring process (and the running example) described in Section 5.1,
selected editors for content, navigation, and presentation authoring are presented.

5.2.2 Editors for Content Authoring

For the graphical creation of media components different visual editors (text editor, image
editor, CSS editor, etc.) have been created. By example of a picture representing a painting,
Figure 5.8 presents the image editor. It allows to upload images in different formats (e.g.
jpeg, gif, bmp, png), to edit their properties, and to save them as image components. While
most image metadata properties can be configured by appropriate input fields, some editing
operations can be also performed visually. As an example, the size of an image component
can be simply altered by mouse dragging.

To support for adaptation, the media editors (but also all other kinds of component editors)
were extended with a generic mechanism for creating content alternatives. For instance, in
the image editor it is possible to provide an alternative text for browsers that are not able to
present images. Furthermore, image variants with different quality alternatives can be added.
Such variants can be created in three ways: by uploading alternative images, by reconfiguring
(e.g. resizing) the current image and save it as a new variant, or by generating new images
automatically. In the latter case the author can predefine the properties (e.g. pixel size, color
depth, image format) of an arbitrary number of variants to be created. According to this
configuration, the alternative media instances are generated automatically. This feature was
implemented by using the Java API of ImageMagick [@ImageMagick].

After creating media component alternatives, component authors can define their adaptive
behavior by attaching adaptation conditions to each variant. As discussed in Section 4.3.1}
these conditions are Boolean expressions referencing parameters from the CC/PP-based con-
text model. For the configuration of adaptation conditions the profile browser was developed
(see Figure 5.9). It allows authors to visually navigate through the hierarchy of profiles,
to choose the appropriate parameters, and to insert them into adaptation conditions. The
profile browser can be configured by an RDFS document defining the current application’s
context model. The example in Figure 5.9 declares to use the current picture for browsers
with less then 8 bits per pixel color depth and less than 400 pixel horizontal resolution. As
can be seen, authors can “click together” complex logical expressions by visually choosing the
appropriate parameters from the pop-up window presenting the context model’s hierarchical
structure.

© Copyright TU Dresden, Zoltan Fiala 111

Chapter 5. The Authoring Process and its Tool Support

£ AmacontBuilder -3l x|
Dokument Bearbeiten Anzeigen Einflgen Tools Fenster Hife
1 1| E |E |~ @
e HNE RN R E R EEEEER
Z [D:\Programme’Tomcat'webapps',cocoon'amacontwebie-gall =lOox]
3 AMACONT Image Editor | MediaAdaptationEditar | %ML Editor | Template Editor |
|| HeaderPicture
Kein Template definiert. [~ Template-Manager anzeigen [Worschau anzsigen
Eildinformationen BildgriiGe
Bild-LIRL: Ereite: Hiihe:
|Image-SK-.Q-1935.org.jpg | Iﬁ Iﬁ
ilI _|I I lI]

Alternativer Texk:
IPaintingPicture|

== | Criginalgréife |

Zuriicksetzen ‘Worschau Speichern

Schemavalidation: ist nicht akkiv,

Figure 5.8: Image editor

{$DeviceProfile.BitsPerPixel<8) and ($DeviceProfile.ScreenSize.ScreenSizeX<400)
~ldentificationProfle - DevicePrafile
| | IdentificationProfile = | | DevicePrafile =
et 1D =[] HardwarePlatform
@ Password =] SereenSize
- Role en B
i Title
@ Firstname B[] AwailS creenSize
i Lastrname ‘oot BitsPerPinel
e hge [k Browserla,
@ Stest] e # Browszerlame
- Zipcode = i e # Browsetfersion I
o Ciw e # JavatppletEnabled
-4 Country LI ------ # Ccppaccept :I
~SoftwarePlatiorm————————— EnvironmentProfile
|| SoftwarePlatform # EnvironmentProfile
Ly Cepphccept-Language
05Mame

Figure 5.9: Defining adaptation conditions with the profile browser

The mechanisms described above aim at authoring adaptable content (media component)
instances. Still, in order to support for data-intensive Web applications, the editor tools can
be switched from this “instance mode” to the so-called “template mode”, i.e. authors can

112 © Copyright TU Dresden, Zoltan Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

assign a data source query to the currently edited component [Tietz 2006]. The result is a
component skeleton (component template) that can be filled with dynamically retrieved data
on-the-fly.

4 [D:Programme’, Tomcat\webapps',cocoon',amacont'web'e-gallery!painting. ;Iglﬂ
1 AMACONT Image Edior | MediafdaptationEditor | %L Editor | Template Editor
i8] HeaderPicture
\ background i Datenbank-Cuer: Datensétze
w PainterPickure
e e SGL-Abfrage: = 111 - |
Ise\ect * from image where id=substitute{id) Ausfihren | Guery laden |
A Speichern |
¥ Query in diesem Knoten shlegen

¥ TemplateManager anzeigen

rEBildinformationen "Bildgrﬁf’

Bild-URL:
|Image-SK-F\- 1935.0rg.jpg

Breite: Hihe:

| I | Eﬂﬁ

|
Datenbank-Inhale » W Datenbank-Inhalte

id {INTEGER. UMSIGNED)

Alternativer Text:
Inull

width (SMALLINT} =
height (SMALLINT)

instance_attr_actar (VARCHAR)
- keine -

Zuriicksetzen Vorschau Speichern |

Schemavalidation: ist nicht akkiv.

Figure 5.10: Template editor for image components

Figure 5.10/ depicts this mechanism by example of the image editor. As can be seen, in
this particular case the author defined a simple query retrieving images (of paintings) as well
as their metadata from a relational data source. Note, however, that it is also possible to
access the results of a query which was defined on a higher level in the component hierarchy.
After defining a query, the author has the possibility to assign specific fields of its result
set to the attributes of the image component. The drop-down list shown in Figure |5.10
illustrates how he assigns the source field of the query’s result set to the source attribute of
the image component template. Consequently, such dynamic attributes will be filled with the
appropriate values on-the-fly. As a matter of course, it is allowed to define some attributes
as constants. Furthermore, it is also possible to define adaptation operations on template
level by creating a variant of the component template, assigning an alternative query field
(containing e.g. the PDA variants of images) to it and defining a corresponding selection
method. For more information on the AMACONTBuilder’s media editors the reader is
referred to [Fiala et al. 2005].

5.2.3 Editors for Hypertext Authoring

Whereas the editors for content authoring facilitate the creation of media components (or
templates) and their adaptation variants, the editor modules for hypertext authoring focus on
structuring and interlinking components to complex hypermedia structures. They are further
divided into two groups: 1) editors for composing component hierarchies and 2) editors for

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 113

Chapter 5. The Authoring Process and its Tool Support

defining hyperlink structures between those hierarchies.

5.2.3.1 Editors for Creating Component Hierarchies

The visual creation of component hierarchies is facilitated by two modules, the structure
editor and the subcomponent editor [Niederhausen 2006]. While the former one aims at
specifying the overall composition structure of a component-based Web document, the latter
one allows to manipulate the immediate subcomponents (i.e. child components) of a composite
component in more detail.

The main application scenario of the structure editor (see Figure 5.11) is the creation
of a component-based Web document “from scratch”. Starting from an empty document
component, authors can easily specify its internal structure by defining its subcomponents
(and the subcomponents of those subcomponents) in a visual way. The available compo-
nent types to be included (created) are visualized on the bottom part of the editor and can
be placed into a container component (or moved from one container to another) by using
“Drag&Drop” mechanisms. During this composition process, the integrity constraints dic-
tated by the component-based document format are strictly taken into account. For instance,
a media component has to be always contained by a content unit component.

4 [D:Programme’, Tomcat'\webapps'cocoon'amacont'web' e-gallery'painting-zmil] ;|g|1|
_‘J AMACONT Strukbur-Editar | Layout: Editor I LayoukAdaptationEditar I SubcomponentadaptationEditar I #ML Editar I Template Editor I
=-[Ed] websSite

E| Header WiebSite

| = Headercu
- PaintingInfo
{5 PaintingCU
E| PainterInfo
[#-[-=] PainterCU

ey I Strukkur importisren | Speichern Schliefen I

Schemavalidation: ist nicht akkiv.

Figure 5.11: Structure editor

As a matter of course, the structure editor is also ideal for visualizing (or manipulating)
the composition hierarchy of an already existing component hierarchy. Furthermore, it allows
authors to directly access any component contained in a component-based Web document.
By double-clicking on an arbitrary component the appropriate editors assigned to it are
automatically activated. As an example, the activation of an image component invokes the
image editor (shown in Figure 5.8) in a modal editor window. Moreover, the structure

114 © Copyright TU Dresden, Zoltan Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

editor is not only associated with top-level document components, but also with all kinds
of composite components. In the latter case it only visualizes the subcomponent tree of
the currently selected composite component, thus providing partial views on (fragments of)
complex component hierarchies.

Whereas the structure editor is ideal for creating and visualizing component hierarchies of
arbitrary depth, there are also cases when component authors would like to deal only with the
immediate subcomponents of a composite component. A typical use case is the population of a
component structure with concrete media components or the definition of adaptation variants:
the subcomponent structure of a component might vary according to a given user model or
context model parameter. For this reason the subcomponent editor shown in Figure 5.12 has
been developed. It is associated with composite components (both document components and
content unit components) and visualizes their immediate subcomponents as an unordered list.

4. [D:Programme’, Tomcat'webapps',cocoon’, amacont’web'e-galle ;I gl ll

_‘J AMACONT Strukkur-Editar | Layout Editor
E}-- ‘website

5e1| Header Kein Template definiert, [~ Template-Manager anzeigen [Yorschau anzeigen

WML Editor | Template Editor |

PaintingCL
E Paintinghame
E Painting¥ear Komponente 1 Komponente 2 Komponente 3 Komponente 4
m PaintingFicture ¢ .
|=| GreetingText 1 1

PainterInfa \ \

PaintingMarme Paintingear PaintingPickture GreetingTexk

Alle I Bilderl Videosl Soundsl Textel

PaintingMame Painting¥ear PaintingPict... GreetingText

Kl i

Anzuzeigende Komponenten

{* Mur untergeordnete Elemente

(" Komponenten aus gesamtemn Dokument I™ Warianten anzeigen

(" Komponenten aus anderem Dokument

Zuriicksetzen Speichern

4 |

Schemavalidation: ist nicht akkiv.

Figure 5.12: The subcomponent editor

According to the running example described in this chapter, the composite component
shown in Figure [5.12 contains information on a painting. In this case it is put together
from several subcomponents: the painting’s name, textual description, creation year, and a
greeting text addressing the user. As a matter of course, the subcomponent editor can be
also switched to template mode. Taking the example, one could connect it to a database
query in order to present dynamic information on paintings selected at run-time. What is
more, a composite component may aggregate both static and dynamic (i.e. template-based)
subcomponents. For instance, while the media items describing the actual painting could be
dynamically retrieved, the greeting text addressing the user is constant for all paintings and
is therefore a static component instance. Finally, similar to media editors, the subcomponent
editor also facilitates the creation of alternative component structures and selection methods.

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 115

Chapter 5. The Authoring Process and its Tool Support

As an example, the author might provide additional information on paintings for expert users,
or insert some multimedia material for devices capable of presenting it.

5.2.3.2 Editors for Creating Hyperlink Structures

The AMACONTBuilder provides two editor modules for graphically authoring hyperlinks and
hyperlink structures [Niederhausen 2006]. While the graph editor facilitates the visualization
of a component-based Web presentation’s overall hypermedia structure, the hyperlink editor
supports the creation of single hyperlinks or hyperlink lists.

The graph editor shown in Figure [5.13 presents the hypermedia structure of a compo-
nent-based Web presentation in a graph-like way’. The nodes of the graph correspond to
top-level document components. A directed edge between two such nodes means that there
is at least one hyperlink component connecting them. Still, for better readability, “parallel
hyperlinks” between two documents are merged to one edge, i.e. only the connectivity of the
corresponding nodes is represented. Furthermore, author can use “filter functions” to display
only hyperlinks of a given type (e.g. typed links, template-based links or adaptive links).
While mainly serving for visualization purposes, the graph editor is an ideal starting point
for further authoring operations. When clicking on a node, the AMACONTRBuilder opens
the appropriate document that can be then edited in more detail.

£ GraphTool

E
=

scifi_star-wars2

. direct_links
it

. movies

\ doku_wissen

4 of

Praojekk: ID:lPngrammelTomcatlwebappslcocoon\amacunt\web\videothek ﬂ |Anzelgen| Web-Site laden... | Optionen. .. Schliefen |

action_matrix

Figure 5.13: The graph editor

In order to create and manipulate single hyperlinks or hyperlink lists the so-called hyperlink
editor was developed. However, instead of being a stand-alone module for authoring abstract

"In order to present the graph editor based on a larger example, Figure [5.13 illustrates the navigation
structure of a component-based video rental shop.

116 © Copyright TU Dresden, Zoltan Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

hyperlink components independent of the underlying content, it is used in combination with
the editor modules aimed at the creation of components that serve as the starting anchor of a
hyperlink component. As an example, the author of a text component can mark an arbitrary
text fragment and define a hyperlink starting from that component. Furthermore, it is also
possible to visually create complex navigation bars (i.e. composite components consisting of
a number of anchors and corresponding links) in form of specific document components. As
a matter of course, the resulting structures are stored as separate content components (e.g.
media component) and hyperlink components. However, this integrated view supports for a
more intuitive way of working for component authors.

Similarly to other editor modules, the hyperlink editor can be also switched to the tem-
plate mode. Again, different parameters of a hyperlink (such as its target, anchor text, or
even the request parameters attached to it) can be customized by appropriate data queries.
Furthermore, it is also possible to specify the adaptive behavior of a hyperlink component.
Four basic adaptation techniques are supported: link hiding, link remowval, link disabling, and
link annotation. The usage of a given adaptation technique can be bound to a condition that
references the context model. Again, such conditions can be visually defined by using the
profile browser (see Figure [5.9).

5.2.4 Editors for Presentation Authoring

Finally, a number of editor modules for configuring the presentation layout of component-
based Web documents have been developed. As discussed in Section 5.1 they serve two
purposes: the definition of a component’s abstract layout, and the configuration of its styling
by using CSS. These tasks are facilitated by the layout editor and the CSS editor, respectively.

Figure 5.14] shows a screenshot of the layout editor. It facilitates the assignment of lay-
out managers to components and to configure their various attributes in an intuitive visual
way. Layout managers are visualized by means of a grid that can be filled by icons repre-
senting subcomponents. Various mouse dragging and “Drag&Drop” techniques have been
realized in order to perform most operations graphically, such as resizing the grid, placing
subcomponents into grid cells, changing their alignment, etc. Besides, various input fields
for fine-tuning all possible layout attributes (both layout attributes and subcomponent at-
tributes) can be found on the right editor pane. Furthermore, a preview function for testing
the current layout in XHTML has been developed, too.

Figure 5.14] depicts a possible abstract layout for the component presenting paintings
(see Section [5.2.3). Based on vertical BoxLayout, the content pieces describing a painting
are arranged in a linear structure. Note that even though the figure depicts a concrete
“painting instance”, this editor can be switched to template mode, as well. However, as far
as iterative templates (i.e. templates with an unpredictable number of subcomponents) are
concerned, only the layout managers GridTableLayout (with only one predefined dimension)
or BoxLayout (with an undefined number of subcomponents) can be utilized. Furthermore,
layout adaptations can be easily specified by the creation of appropriate layout alternatives
and the definition corresponding selection methods.

On the other hand the CSS editor aims at defining the design of the resulting application.
It is a simple (media component) editor module allowing for loading CSS files as well as for
manipulating their style definition entries. It allows authors to select different elements of
the respective output format and configure their layout attributes (e.g. font sizes, colors, text
decorations, etc.). The resulting definitions are stored as CSS media components. Of course,
similar to the other editors, component authors can again define alternative CSS variants

© Copyright TU Dresden, Zoltan Fiala 117

Chapter 5. The Authoring Process and its Tool Support

i [D:"Programme’, Tomcat' webapps',cocoon’,amacont’,web'e-gallery' painting. ;IQILI
4 AMACONT Strukbur-Edibor Lavout Editor | Subcomponent-Editor | %ML Editar I Template E\:Iiturl
=3 website

Header Kein Template definiert, ™ Template-Manager anzeigen [~ Yorschau anzeigen

[=}-{se1] PainkingInfa
. - PaintingCU

> Ansicht

- Paintinghame

i {E|paintingirear schematisch
- PaintingPicture

i |E| areetingText .
PainterInfo Paintinatlame Layout Zellen-Attribute I

¥ Ereite

100 % T

[Hahe
Austichtung

o] i [
a

(=] [4
Paintingyear D mlﬁ

WHL-Eigenschaften
| [¥ anzsigen
| Beschreibung
GreetingText

Painkingh... Painting¥ear PaintindPi... GreetingT...

K| i

Zuriicksetzen Speichern |

PainkingFicture

| |+

Schemavalidation: ist nicht akkie.,

Figure 5.14: Layout editor

and assign them to a specific context model parameter.

5.2.5 The XML editor

The main goal of the AMACONTBuilder is to provide a set of visual editor modules that
allow component authors to abstract from the the component-based document format’s un-
derlying XML grammar. Still, in order to exploit the full range of language features (e.g.
the ones for which there are no graphical authoring plugins available, yet) or to debug the
XML code generated by other visual editor modules, it is also required to provide “low-level”
source code editing support. For this purpose, the built-in XML editor provided by the
AMACONTBuilder’s underlying plug-in architecture can be utilized®. Inspired by the func-
tionality offered by professional XML tools (e.g. XMLSpy [@XMLSpy]), it provides a number
of useful features, such as:

e syntax highlighting with adjustable font types and sizes, as well as configurable color
schemes for different parts of XML documents, like tag names, attribute names (and
values), comments, DOCType declarations, etc.

e partial views on complex XML documents by displaying only the XML subtree that
belongs to the node (component) being currently selected in the navigation frame

e automatic indentation of XML tags to an easily readable “pretty-print” layout

8Note that the XML editor was already presented in Figure [5.7.

118 © Copyright TU Dresden, Zoltan Fiala

5.2. A Modular Authoring Tool for Component-based Adaptive Web Applications

e well-formedness checking as well as validation of XML documents based on asso-
ciated XML schemas with appropriate textual feedback on found errors

e schema-based code completion for XML (sub)elements and attributes based on
well-formedness rules as well as default values provided by a corresponding XML schema

While being primarily used to edit XML documents based on the component-based docu-
ment format, the XML editor is a generic tool that is applicable for arbitrary XML grammars.

5.2.6 Implementation Issues

The AMACONTBuilder was implemented in Java and is a modular authoring tool allowing
for creating and editing arbitrary XML documents. As mentioned above, it is based on a
generic framework [Chevchenko 2003 that can be extended by graphical editor plug-ins for
visually authoring specific types of XML content. In order to provide programmatic access
to all kinds of XML data, the AMACONTRBuilder utilizes a flexible internal object model
which is based on JDOM [@Qjdom]|. This generic object model was extended by specific
classes that provide an API for efficiently manipulating adaptive Web components. That is
to say, component-based adaptive Web documents are automatically parsed into a hierarchy
of component specific objects when they are opened by the AMACONTBuilder.

The UML diagram shown in Figure [5.15/ depicts the most important classes of the object
model hierarchy that are specific to the component-based document format. The root of
this object hierarchy is the class AmacontNode providing a number of generic methods for
component manipulation. The specific classes representing concrete component types inherit
from it and declare their (additional) specific attributes and methods, respectively. As an
example, the developer of an editor plug-in dealing with image components can utilize pre-
defined methods of the class AmalmageComponent for getting and setting image metadata,
for creating image component variants and selection methods, etc.

Note that the utilization of such an object model has different advantages. First, plug-in
programmers can use a high-level API for manipulating adaptive Web components and do not
have to bother about their concrete underlying XML-based format. Second, this solution pro-
vides also more robustness regarding to modifications of the utilized XML languages. During
the “evolution” of this dissertation different changes to the component model’s XML-based
description language were made, especially in order to provide less redundant descriptions
and better performance in the document generation process. Still, as the plug-ins of the
AMACONTBuilder work on an internal object model, it was sufficient to adjust the map-
pings between that model and the XML-based formats, not needing to modify the application
logic of specific plug-ins.

The editor modules (plug-ins) of the AMACONTBuilder have to implement a correspond-
ing interface class”. It specifies a number of generic methods, e.g. for accessing the underlying
object model, to set up the editor’s graphical user interface, to check if the editor performed
modifications on the object model, to write back these modifications to the object model,
etc. Furthermore, whenever an editor should be extended with the capability to create and
manage adaptation variants of the edited component type, it can inherit from a specific
predefined class'® that already implements this functionality in a generic way.

The assignment of editor modules to a specific component type is managed by an XML-
based configuration file called amaplugins.xml. Listing [5.1 depicts a “fragment” of this

de.tudresden.inf.amacont.plugins. EditorPlugin [Miiller et al. 2005)
1%de.tudresden.inf.amacont.plugins. Abstract AdaptableEditor [Niederhausen 2005a]

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 119

Chapter 5. The Authoring Process and its Tool Support

AmaHyperiinkComponent AmahppletComponent AmaAudioComponent

AmaCSSComponent

AmalmageComponent

—
q\

AmacontNode AmaediaComponent AmaJSComponent

AmaMultimediaComponent

AmaYideoComponent AmaTextComponent

AmaComposedComponent

fl V\ AmaStructuredTextComponent

AmaContemtUnitComponent AmaDocumentComponent
// \\ AmaWebSiteComponent
AmaVideoTextComponent AmalmageTextCompeonent
AmaWebPageComponent
AmaSetComponent

AmaListComponent

Figure 5.15: AMACONTBuilder object model

file aimed at associating the Java class implementing the image editor with all objects of
the type AmalmageComponent (from the AMACONTBuilder’s object model). The config-
uration specifies the plug-in’s name, its version number, author, a short textual description,
the class that implements it, and the elements from the object model to which it is as-
signed. While in this case the image editor is associated only with the elements of the type
aco:AmalmageComponent, note that one can also associate an editor plug-in (e.g. the XML
editor or the structure editor) with a number of classes of the object model.

1 <Plugin type="editor">

2 <Name>amacont .imagecomponent .editor</Name>

3 <Version>1.0</Version>

4 <Author>Matthias Niederhausen</Author>

5 <Description>Image Editor</Description>

6 <Class>de.tudresden.inf.amacont.plugins.ImageEditor</Class>
7 <Element name="aco:AmalmageComponent" />

8 </Plugin>

Listing 5.1: Assignment of an editor module to a component type

For further detailed information about the AMACONTBuilder’s architecture, internal
object model, configuration, and the implementation of its various editor modules the reader
is referred to [Fiala et al. 2005, (Chevchenko 2003, Niederhausen 2005b, Niederhausen 2006,
Tietz 2006].

120 © Copyright TU Dresden, Zoltan Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

5.3 From Com}s)onent Authoring Towards Automatic Model-
Driven WIS Generation

The first part of this chapter introduced the structured Hera-AMACONT methodology for
the development of component-based adaptive Web applications. According to the design
steps identified by Hera, it was shown how those concepts can be applied to systematically
implement adaptive Web applications by creating, configuring, and aggregating components
(or component templates). During the phases of design and implementation, a main focus
was put on the consideration of different adaptation issues (concerns). Thus, a possible
model-based authoring process for component developers was provided.

Basically, there are two possibilities to put such an identified process model into practice.
In the first case component authors can use the existing (and already introduced) modules
of the AMACONTBuilder. Considering the different designs and keeping in mind the iden-
tified authoring steps, they can then build complex adaptive Web applications by creating,
configuring, and composing reusable components (or component templates). The advantage
of this “manual mapping” approach is the utilization of a graphical authoring tool that al-
lows for visually editing component properties in detail. Furthermore, in a similar way, it
is possible to proceed according to the steps identified by another design or process model.
However, such a manual mapping also means that the applied design model serves mainly
as a “guideline” (or documentation) for component authors, i.e. its semantics is not explicily
exploited when creating component-based adaptive Web applications.

The second possibility is take a further step from model-based to model-driven component
engineering and add automation to the overall process of design and implementation. The
reason for this is the fact that, besides graphical representations (in form of diagrams), high-
level design models can be also expressed in a formal way. As an example, we again consider
Hera that provides RDF(S)-based specifications of its different design issues. By explicitly
describing model semantics, such specifications can be used for the automatic model-driven
generation of a corresponding implementation. This approach is also pursued by the Hera Pre-
sentation Generator (HPG [Frasincar et al. 2005]), a tool aimed at creating and implementing
Hera models. However, prior to the work described in this dissertation, Hera’s presentation
model was not formalized, nor was adaptation at the presentation level addressed and imple-
mented in the Hera tools. Moreover, HPG uses conventional Web document formats (such
as HTML) as its implementation model, not allowing to reuse the generated implementation
artefacts in a component-based manner. Thus, this section aims at the automatic, model-
driven generation of component-based adaptive Web presentations from high-level design
model specifications. This will allow to combine the modeling power of the (extended) Hera
design method with the flexible reuse, presentation, and adaptation capabilities provided by
the component-oriented document format and its publication architecture.

To achieve this goal, two requirements have to be fulfilled. First, all design models describ-
ing an adaptive Web application have to be expressed in a formal way. Second, a series of
model-driven transformation steps is needed to automatically map these model descriptions
to a component-based implementation. To meet these requirements, this section provides a
facility for the (currently missing) RDF(S)-based formalization of a Web application’s presen-
tational aspects (as well their as corresponding adaptation issues) at model level. Bridging
the gap between the application model and the actual implementation, this formalization will
be utilized to automatically generate an adaptive component-based presentation.

The rest of this section is structured as follows. In Section 5.3.1 the concept of ab-
stract layout managers (from the component-based document format) is adopted to the

© Copyright TU Dresden, Zoltan Fiala 121

Chapter 5. The Authoring Process and its Tool Support

Hera-AMACONT presentation model, and its RDFS-based description is provided. Accord-
ing to this formalization, Section [5.3.2) describes how high-level model specifications can be
automatically transformed to an implementation utilizing the component-based document
format and its document generation architecture. The XML-based transformation steps are
explained in detail, and the resulting methodology is exemplified by a prototype application.
Furthermore, selected aspects of dynamic adaptation provided by the overall presentation
generation process are also discussed.

5.3.1 RDFS-based Specification of the Hera-AMACONT PM

In order to formalize the Hera-AMACONT presentation model, an RDFS-based specification
of the PM schema was developed [Fiala et al. 2004a]. The basic idea behind it was to transfer
(i.e. adopt) the concept of abstract layout managers from the component-based document
format to the model level. The layout manager concept was already introduced in detail in
Section 4.3.2. As mentioned there, layout managers aim at describing the spatial arrange-
ment of components in a client-independent way, thus allowing to abstract from the exact
presentation capabilities (e.g. window size) of a concrete browser display.

Note that in Section [5.1.4] significant analogies between document components and Hera
slices were mentioned. Furthermore, a “recipe” for the mapping of slices to components
was also introduced. Taking advantage of these analogies (and the fact that both slices and
components rest upon XML technologies), it is thus straightforward to transfer the concept
of layout managers to the model level. That is to say, the basic idea is the assignment
of abstract layout descriptors to Hera slices in order to specify the arrangement of their
subslices in an implementation-independent way. As a consequence, the RDFS-based PM
formalization supports two mechanisms: 1) the definition of model-level layout managers
and 2) their assignment to AM slices. A slice with an associated layout manager constitutes
a so-called region: an abstraction for a rectangular part of the display area where the content
of that slice will be displayed. These mechanisms will now be explained based on the running
example used throughout this chapter.

Figure 5.16 depicts a schematic graphical presentation diagram (PD) of the running ex-
ample’s starting page (presenting painting techniques). Note that it is based on the corre-
sponding application diagram (see Figure 5.3) which is extended by additional presentation
specific information, i.e. the presentation diagram acts as an overlay of that application di-
agram aimed at specifying its layout!!. As an example, the dark rectangle “behind” the
top-level slice depicts the top-level region representing its contents. It utilizes the layout
manager instance BoxLayoutl for the spatial arrangement of the corresponding subslices
(i.e. of the regions assigned to them). The simple RDF code snippet for specifying this layout
assignment is shown in Listing [5.2.

1 <Slice rdf:about="#Slice.technique.main">
<layout rdf:resource="#BoxLayoutl"/>
3 </Slice>

Listing 5.2: Layout assignment to a slice

The specific attributes of this layout (BoxLayout1l) are also schematically shown in the
diagram by means of arrows that are labeled with their names and corresponding values. Both

HGimilar to the AM aimed at grouping the concepts of the CM to slices, the PM leans itself on the AM
by further defining the spatial arrangement of those slices.

122 © Copyright TU Dresden, Zoltan Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

BoxLayoutl .
axis
technique width
> 100%
halign
Ciname> > left
T halign
description ———— |eft
cols GridLayoutl |
3 -
width BoxLayout2 axis
100% ~= — >y
halign painting halign
center - > left
halign width
center *100%
halign
™ center
Set
|

condition condition

L L
pres:client=PC ‘ ’ pres:client:PDA‘

Figure 5.16: A Hera-AMACONT PM example [Fiala et al. 2004a]

attributes describing the overall layout and attributes specifying the arrangement of each
referenced subslice (subregion) can be defined. Since these attributes were taken from the
component-based document format, the reader is referred to Section 4.3.2/ for more detailed
information.

In this particular case the subslices (subregions) of the top-level slice (top-level region)
are arranged in a vertical way. Concretely, these are the three subregions associated with the
subslices tname, description as well as the link list pointing to the paintings representing
the actual painting technique. The RDF-based representation of this layout definition is
shown in Listing 5.3l

As already mentioned, layout descriptions of a given region describe only the spatial
arrangement of its immediate subregions. Whenever these subregions also contain nested
subregions, their appropriate layouts have to be additionally specified. In Figure 5.16 this
is the case for the link list (set-element) pointing to the associated painting slices. The
corresponding layout assignment is specified by the RDF code shown in Listing [5.4.

Note the attribute pres:condition that allows to declare simple adaptation condi-
tions that reference parameters from the usage context. Whereas for example the paintings
exemplifying the presented painting technique are arranged on a desktop in a tabular way
(GridTableLayout1), the small screen size of PDAs requires to adjust them below each other
(BoxLayout2). In Figure 5.16/ these conditional layout assignments are visualized by the two
overlapping regions as well as the two dashed arrows pointing to the rectangles containing
their conditions.

© Copyright TU Dresden, Zoltan Fiala 123

Chapter 5. The Authoring Process and its Tool Support

1 <BoxLayout rdf:ID="BoxLayoutl">

2 <axis>y</axis>

3 <width>100%</width>

4 <subregion-ref>

5 <subregion pres:align="left">

6 <slice-ref rdf:resource="#Slice.technique.tname"/>
7 </subregion>

8 </subregion-ref>

9 <subregion-ref>
10 <subregion pres:align="left">
11 <slice-ref rdf:resource="#Slice.technique.description"/>
12 </subregion>
13 </subregion-ref>
14 <subregion-ref>
15 <subregion pres:align="center" pres:valign="top">
16 <set-element-ref rdf:resource="#SetOfLinks_1"/>
17 </subregion>
18 </subregion-ref>
19 </BoxLayout>

Listing 5.3: High-level BoxLayout definition example

1 <Set—-element rdf:about="#SetOfLinks_1">

2 <layout rdf:resource="#GridTableLayoutl"

3 pres:condition="pres:client='Desktop’"/>

4 <layout rdf:resource="#BoxLayout2"

5 pres:condition="pres:client='PDA’'"/>

6 </Set-element>

Listing 5.4: Layout assignment to Set elements

Finally, Listing [5.5 presents the RDF code specifying the GridTableLayoutl layout
manager. According to this, the painting pictures (acting as the link anchors to the painting
slices) are arranged in a tabular way.

1 <GridTableLayout rdf:ID="GridTableLayoutl">
2 <rows>2</rows>

3 <width>100%</width>

4 <height>80%</height>

5 <space>10</space>

6 <border>0</border>

7 <header_align>xAxis</header_align>

8 <subregion-ref>

9

<subregion pres:align="center" pres:valign="center" ... >
10 <slice-ref rdf:resource="#Slice.painting.picture"/>
11 </subregion>
12 </subregion-ref>

13 </GridTableLayout>

Listing 5.5: High-level GridTableLayout definition example

Note that in contrast to static components defined at instance level, Hera-AMACONT
layout assignments have to be specified at schema level. Due to the dynamic nature of WIS
applications, this means that the number of items in an access element (e.g. the number of

124 © Copyright TU Dresden, Zoltan Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

paintings exemplifying a given painting technique) is not known at design time. In such cases
one should use either a BoxLayout with an undefined number of cells or (as shown in our
particular example in Listing [5.5) a GridTableLayout so that only one of its dimensions
(columns or rows) is predeclared. The missing dimensions (in this particular example the
number of columns in the resulting table) are automatically computed at run time (see later
in Section 5.3.2.2)).

5.3.2 Automatic Generation of a Component-based Implementation

After the RDF(S)-based specification of the Hera-AMACONT PM, all design models can be
expressed in form of RDF(S)-based specifications. Given these specifications, it is now shown
how they can be utilized to automatically generate a component-based adaptive Web applica-
tion that can then be published (and adapted) for different device, user, and context profiles.
Furthermore, a prototypical implementation of this automatic hypermedia generation process
is presented.

First, the general transformation architecture is described in overview. Then, the auto-
matic model-driven generation of adaptive document component structures as well as their
dynamic publishing process based on the actual usage context are explained. Finally, se-
lected issues of dynamic adaptation (adaptivity) provided by the resulting component-based
implementation are illustrated.

Model-based WIS specification

configures

2]

@ nnnny

Model-driven Hypermedia Presentation Generation

@nrnnnnn

Transform Transform Transform

Figure 5.17: Model-driven WIS generation process overview

Figure 5.17 gives a general overview of the targeted model-driven Web presentation gen-
eration process. As depicted there, this general architecture consists of a series of transfor-
mations that convert some input data to a hypermedia (Web) application. The input data
represents structured information that corresponds to the application domain (here defined
by the CM). The transformations are configured by a number of models that dictate the ap-
plication’s navigational and presentational behavior. In the case of Hera-AMACONT, these
are the AM and the PM, each being “enriched” with corresponding adaptation definitions'?.
We note, however, that this general architecture is also characteristic for other model-driven
approaches.

Figure|5.18 depicts the concrete envisioned data transformation process in more detail. Its

12Note that the Hera project provides graphical tool support for creating conceptual and application mod-
els [Frasincar 2005].

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 125

Chapter 5. The Authoring Process and its Tool Support

input is a conceptual model instance (CMI), an RDF document (or repository) that contains
all the data (among others references to the the media objects) underlying the conceptual
model (CM) of a Web application. Thus, as already described in Section 5.1.2, the specifi-
cation of a Web application’s conceptual model has to be accompanied by the creation or
retrieval of media instances that represent the identified concept attributes, i.e. constitute the
application’s underlying data. To cope with the specifics of the component-based document
model, it is assumed that those media instances are annotated with appropriate metadata.

t t
H Context Modeling F_

e

; 3

i 5

Context Model i ‘

CM AM PM |

5 | ¥ | |
: : : i (Document Generation 1 x|
v v 4

@

development time ! run-time / publication time

= . : variants and o context HTML
(CMI) and Configuration adaptation data WML

options

i Input Doc. Transform Rendering
data Component Creation i contains all Adaptation XHTML

|

@

Figure 5.18: Component configuration and publication

In order to deliver Web users an adaptive hypermedia presentation on top of this data, two
tasks have to be performed. First, a component-based Web presentation has to be created (see
the left part of Figure [5.18)). During this phase of “component creation and configuration”,
the appropriate models (i.e. the AM and the PM) describing the application have to be taken
into account. Second, according to the actual user’s request and current usage context, the
created component structures have to be sent to the document generation pipeline (see the
right part of Figure [5.18). While the first task is performed only once (i.e. once for each
application), the second one is executed for each user request. However, both tasks can be
performed automatically, i.e. no additional participation of the Web designer/developer is
needed. The following sections describe the corresponding transformation steps in detail.

5.3.2.1 Model-driven Component Creation and Configuration

As described above, the first part of the overall transformation process aims at the model-
driven generation of a component-based adaptive Web application. It was designed and
prototypically implemented in a static and a dynamic variant, indicating whether the gener-
ated adaptive component structure consists of component instances or component templates.
The first variant creates a static component-based adaptive hypermedia presentation, i.e. a
network of adaptive document component instances for all the underlying data (e.g. in our
running example for all instances of painting techniques, paintings, or painters) at once. Still,
the term “static” refers only to the data offered by the resulting hypermedia presentation, it

126 © Copyright TU Dresden, Zoltan Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

can be still dynamically adjusted to different usage contexts at the later document generation
process (see Section [5.3.2.2)). While providing better performance for document generation,
the shortcoming of this variant is that the underlying data can not be altered at run-time.
On the other hand, the dynamic variant creates a structure of adaptive document component
templates (each corresponding to a top-level slice) that are subsequently dynamically filled
with volatile data at each request only during document generation. Since (apart from small
deviations) the two transformation variants are quite similar, we describe here the static one.
This “component creation and configuration” process is parameterized by the application
model (AM) and the presentation model (PM) and consists thus of two phases. The first phase
takes the AM into account to convert the original data (CMI) to a component-based Web
document structure (still without layout descriptors). This phase consists of two substeps.

In the first substep, a so called application model instance (AMI) is generated. It is an
RDF document, an instantiation of the application model (AM) with the data available from
the original conceptual model instance (CMI). For this transformation substep existing mod-
ules from the Hera Presentation Generator (HPG [Frasincar et al. 2005]) provided by the
Hera project have been also utilized. However, in this particular scenario, the delivered ap-
plication model instance is still unadapted, i.e. it contains appearance conditions referencing
(both static and dynamic) parameters from the context model. As described later, this en-
ables to use the various (dynamic) adaptation mechanisms provided by the component-based
document format and its document generation architecture.

In the second substep, the incoming application model instance is automatically con-
verted to a document component structure. Based on the mapping “recipe” described in
Section [5.1.4, the corresponding XSLT transformation stylesheets take the analogies between
slices and adaptive document components automatically into account. Whenever the AM
specified appearance conditions, the resulting component structure also contains adaptation
variants and selection methods (referencing the context model). Still, as the presentation
model has not been considered at this stage, it does not contain layout specific attributes,
yet.

In the next phase of the “component creation and configuration process”, the layout
attributes of the created component structure are configured according to the actual appli-
cation’s presentation model (PM) description. Beginning at top-level document components
and visiting their subcomponents recursively, the appropriate layout descriptors are added
to the meta-information section of each component’s header. Since the layout manager at-
tributes of the Hera-AMACONT PM rest upon the layout concepts of the component-based
document format, this mapping is a straightforward process [Fiala et al. 2004a]. Yet, for set
elements (containing a variable number of subelements depending on the actual size of the
CMI) the concrete dimensions of BoxLayout or GridTableLayout layout managers have
to be computed at run time.

Whenever the PM contains adaptation conditions, these are translated to component lay-
out variants and corresponding selection methods. Thus, for each layout assignment condition
defined in the PM a separate layout manager variant is created. Furthermore, a selection
method according to the switch-case or the if-then-else mechanism is composed (according
to Section 4.3.1). Again, all transformations are implemented as XSLT stylesheets.

Note that the output of this component creation and configuration process is a document
component structure (or network) containing both adaptation variants as well as as adaptive
layout descriptors.

© Copyright TU Dresden, Zoltan Fiala 127

Chapter 5. The Authoring Process and its Tool Support

5.3.2.2 Document Generation

As shown in the right part of Figure 5.18, the generated component structures manifest a
component-based implementation of the designed hypermedia application and serve as the
input data for the document generation pipeline. As described in detail in Section 4.5,
they are subdued to a series of data transformations that are triggered by the user’s actual
request, parameterized by the current context model, and result in an adapted hypermedia
presentation. Based on these transformations, Figurel5.19/shows two versions of the generated
hypermedia presentation, one for desktop browsers and another one for PDAs. Note that
(as specified above) the limited display size of the handheld does not allow for a tabular
arrangement of painting pictures, i.e. they are displayed in a linear way.

3 slice.technique.main_ID1 - Microsoft Internet Explorer] =10 x|

Datel Bearbeten Ansicht Faworten Extras 7 ‘ "

GZurutk) \ﬂ Igl ;\] ‘ /V‘fEu(hen \j\}:’Favnntan @) viedien €4|

Adregse [4] http: juwaus-mmt infbu cresden de:8081 feocoan/herazam | [Wechseln zu |Links » ‘ & -

Chiaroscurn ~ _Ey Internet Explorer ¢ (< 12:07 9

Clair-obscur (French) and chiaroscuro (ltalian) both mean light-dark’. The two Fittpef Purvwyw-mmt. inf tuedresden.de ~ @

terms are used to denote contrasts of light and dark in paintings, drawings, and | Chiaroscuro -
prints. Athough the effect was already in use befors, the term came into vogue in . . .
the late 16th century. The word ariginates in Italy. The painter Caravaggio (1573 | Cla"jUbSCU" (French) and chisroscuro
1610) made chiaroscuro his trademark. He was a master at painting dark scenes (Italian) both mean Ylight-dark’. The
illuminated by a single ray of light word originates in Italy. The painter
Caravaggio (1573-1610) made
chiaroscuro his traderark.

-]
_@ [[mtermet 7

Figure 5.19: Generated hypermedia presentation [Fiala et al. 2004a]

5.3.3 Adaptivity Support

The document generation process described in Section 5.3.2.2] provides for static adaptation
(or adaptability) by taking the user’s actual usage context into account. However, it also sup-
ports selected issues of dynamic adaptation (adaptivity), i.e. the kind of adaptation included
in the generated adaptive hypermedia presentation.

As defined in Section 2.2.1, adaptivity is the capability of a hypermedia presentation
to dynamically reconfigure itself according to a dynamic usage context that is continually
changing during the user’s browsing session. These changes can originate from different
“events”, such as user interactions or even changes to the user’s environment. To implement
adaptivity, such events have to be acquired, the usage context has to be updated, and the
Web presentation has to be regenerated, respectively.

Based on our running example application, Table [5.2] summarizes a number of charac-
teristic examples for adaptability and adaptivity to be considered in the different models
specifying a Web application. To be more accurate, it presents factors (context parameters)

128 © Copyright TU Dresden, Zoltan Fiala

5.3. From Component Authoring Towards Model-Driven WIS Generation

that can be the basis for adaptation. While the parameters in the left column (describing
the state of the user, his device, and environment) are constant for a single user session, the
parameters in the right column can change (within the session) according to the user’s inter-
action behavior. For instance, whereas the color depth of the user’s device or its capability
to present images influence the data to be presented statically, the available bandwidth can
fluctuate and lead to a dynamic adaptation of media instances. Similarly, while the user’s
expertise level might be considered as constant, his knowledge on specific painters might
change dynamically when browsing through the presentation described throughout this ses-
sion. Finally, while the user’s preferences for design elements like font types, sizes, or colors
can be viewed as static factors, the current screen size can be influenced dynamically during
a user session.

Adaptability Adaptivity

CM/MM device type (Device) dynamically changing bandwidth
media types supported by (Bandwidth)
end device
(ImageCapable)

AM user’s expertise user’s changing knowledge
(ExpertiselLevel) on painters (Biography)

PM user’s layout preferences resizing the browser’s window
(PreferredCss) (InnerSizeX)

Table 5.2: Adaptability /adaptivity examples across the design and implementation phases

As described in Section [4.5.3, the document generation architecture of the component-
based document format utilizes an extensible context modeling framework. Providing dif-
ferent kinds of context modeling components (e.g. for device modeling, location model-
ing, or for user modeling), it allows to automatically update selected parts of the context
model [Hinz and Fiala 2005]. As the focus of this chapter was put on the RDF-based speci-
fication of the Hera-AMACONT presentation model, it is now explained how dynamic adap-
tation specified in the PM can be realized.

When the user resizes his browser window, a JavaScript function aiming at determining
the new dimensions and sending them to the server is executed. It is part of a set of client-
side scripts for acquiring device capabilities and interactions which is automatically included
in the presentation during document generation. Via the next HTTP request (initiated by
the user’s navigation) this data is sent to the server where the device model is appropriately
updated. For this purpose the corresponding device modeling component utilizes the profile-
diff mechanism of UAProf implemented by DELI [Butler 2003], an API provided by the
Apache Web server for maintaining and updating device and user profiles based on CC/PP.
For more information of this device modeling issue the reader is referred to [Hinz et al. 2006].

After updating the device model, the request is further processed and the hypermedia pre-
sentation is regenerated (see Figure 5.18). According to the steps described in Section 5.3.2.2]
a new component instance is taken and subdued to the document generation pipeline so that
a new presentation according to the updated context is generated. Figure!5.20 shows how the
generated XHTML presentation is dynamically updated when the user resizes his browser
window during browsing.

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 129

Chapter 5. The Authoring Process and its Tool Support

3 Slice technique.main_ID1 - Microsoft Internet Explorer {ofx] 3 Slice.technique.main_|
| Datel Bearbsiten fnsicht Favorten Exras 2 ,' | e DL M
T . »
@Zuruck zikd) Suchen Faworiten wMedien & »| @Z”’“(k = g k| ;J L Suchen |
adresse [FE] hitp: ot inf.fu-chesden, de 606 1 fcocoonherazam | [6d Werhssheu | Links > @)+ | adegse [] et =] [E] Wechsena | ks > @) -
Shiarescure = Chiarogeuro i
Clair-obscur (French) and chiaroscuro {ftalian) both mean light-dark’. The two Clair-obscur (Fremhl) and Clmamscum
terms are used to denote contrasts of light and dark in paintings, drawings, and (talian) both mean light-dark’. The two
printz. Although the effect was already in use before, the term came into vogue in terms are used to denote contrasts of light
the late 16th century, The word originates in Haly. The painter Caravaggio [1573- and dark in paintings, drawings, and prints
1610} made chiarascuro his trademark. He was a master at painting dark scenes Although the effect was alreacly in Use
illurminated by a single ray of light. befare, the term came into vogue in the
late 16th century. The word originates in
[taly. The painter Caravaggio (1573-1610)
made chiaroscuro his trademark. He was
a master at painting dark scenes
illuminated by a single ray of light
EEE— | — = =
& |1 | |4 Internet 4 &) Fertig | Internet 4

Figure 5.20: Presentation layer adaptivity

5.4 Summary and Realized Applications

This chapter dealt with the engineering process of component-based Web applications. Dif-
ferent application scenarios were briefly discussed, but the main focus was put on the struc-
tured development of data-driven adaptive Web presentations. It was shown how during the
phases of design and implementation different aspects of adaptation can be dealt with. Fur-
thermore, tools and mechanisms for authoring or generating component-based adaptive Web
applications were explained and demonstrated. This section gives a summary of the proposed
multi-stage development process and gives an overview of already realized component-based
adaptive Web applications.

5.4.1 Summary of the Multi-stage Development and Document Genera-
tion Process

As a summary, Figure 5.21] recapitulates in a graphical way the different levels and possi-
ble activities involved in the development and publication process of component-based Web
applications. It distinguishes between three main “levels”: design and modeling, component-
based implementation, and document generation. The numbered arrows represent selected
Web engineering activities or processes. In the following they are discussed in more detail.

1. Component Authoring: The main focus of the activities described in this chapter
lies on the development of adaptive Web applications from reusable implementation
entities (document components) in a component-based way. Such a component-based
Web document is schematically depicted on the left side of the second (middle) box
in Figure [5.21. Though it could be created or edited by using a simple text or XML
editor, the complexity of the component-based document format’s underlying XML
grammar (see Chapter 4) calls for visual authoring support. For this purpose the

130 © Copyright TU Dresden, Zoltan Fiala

5.4. Summary and Realized Applications

Design and Modeling

artifact

=
Cenamd

created by

hyperink

painted_by

Borayour)

préclient=PDA

Model-driven
Component Generation

Model-based Development by a
Hypermedia Design Method

Component-based
Implementation

PaintingComp [oc

Painting

PaintingInfoComp

DC

ImageAndTextComp | CU.
PaintingAttr

=
o

A

Component Authoring

year

=
S

PainterComp
Painter

DC

Design and Development Process

F
e |

Component-based Web Document

AMACONTBuilder

\
-+-——_——_———— e m e == - =
Document .
. equest
Generation . . l
Device Properties / UAProf
User Position Sensor Components
User Interactions Device |||/ o inter- -
® Context Modeling e B g
Device Location User v
Modeling Modeling Modeling e
[a
Update l g
Context Model =
Device Session 8
Profile Profile Profile e
o]
\j ipiion] E
- Transform Transform Transform Rendering
resolve component adaptation XHTML.full
cggfgg:]eer:‘:sé — comp. template of |:>XHTML.basic#
references evaluation component XHTML.MP
variants WML @ | e 5
Pipeline-based Document Generation
Client Device
A
Figure 5.21: Overview of the multi-stage development process
© Copyright TU Dresden, Zoltan Fiala 131

Chapter 5. The Authoring Process and its Tool Support

132

authoring tool AMACONTBuilder (shown on the right side of the second box) was
introduced. It offers a number of graphical editor modules for the implementation
of adaptive Web applications by the visual creation, configuration, and interlinking
of document components. In Figure [5.21] this activity of “Component Authoring” is
depicted by the horizontal arrow in the second box (Nr. 1).

. Model-based Development by a Hypermedia Design Method: As a format-

specific tool aimed at the component-based implementation of adaptive Web appli-
cations, the AMACONTBuilder is not bound to a given process model or authoring
workflow. Quite the opposite, it can be flexibly used in different development scenarios
based on the requirements of the targeted application area. While for smaller Web pre-
sentations an ad-hoc approach is obviously suitable, the development of more complex
adaptive Web applications necessitates to systematically take into account different
application (and adaptation) concerns. As argued earlier, in this latter case compo-
nent authors should proceed in a structured way, guided by an appropriate high-level
model-based design of the hypermedia application.

In Figure 5.21 this model-based component development process is depicted by the
dashed arrow (Nr. 2) pointing from the level of “Design and Modeling” to the AMA-
CONTBuilder. Considering the lines identified by a high-level model-based design
methodology (in this case Hera-AMACONT) as a guideline, component authors im-
plement adaptive Web applications by utilizing the appropriate modules of the AMA-
CONTBuilder in a systematic way. The advantage of this approach is the usage of a
graphical authoring tool that facilitates to manipulate component properties in detail.
Furthermore, in a similar way it is possible to proceed according to the steps identified
by another design method. Note that this approach is also typical for today’s software
engineering practice. Guided by a number of (mostly UML-based) models specifying
the targeted software application, software developers utilize visual development plat-
forms and selected implementation (programming) languages for the realization of the
required functionality.

. Model-driven Component Generation: As discussed above, the AMACONTBuil-

der is a flexible authoring tool that facilitates to implement component-based Web
applications independent from a given design or process model. Still, the observation
can be made that by exploiting the explicit semantics described in a high-level design
model it might be also possible to add automation to the process of design and imple-
mentation. That is to say, the resulting development process is not only model-based
but also model-driven. This process of “Model-driven Component Generation” is de-
picted by the arrow Nr. 3 and was illustrated by example of the Hera-AMACONT
methodology in Section [5.3| of this chapter. Based on the RDF-based formalization of
the PM, it was shown how a component-based Web application can be automatically
generated based on a sequence of design models aimed at describing the Web applica-
tion’s semantic, navigation, and presentation behavior in a formal high-level way. The
resulting Web application still contains all adaptation variants and can be thus later
published for specific users, devices, and contexts.

The main benefit of this approach is the specification of a Web application on a high-
level of abstraction independent of its actual implementation. The required implemen-
tation-specific knowledge is integrated into the “model-to-component transformation
process”, i.e. the automatic mapping guarantees that the semantics of the design mod-
els is appropriately incorporated in the generated component-based implementation.

© Copyright TU Dresden, Zoltan Fiala

5.4. Summary and Realized Applications

Moreover, the usage of Semantic Web technologies in the models also provides a number
of facilities (to be investigated in the future), such as efficient model reuse, interoper-
ability, model checking, and validation, etc.

On the other hand, the specification of an adaptive Web application in form of high-
level design models does not allow to describe its implementation and presentation
aspects as detailed as a “lower-level” implementation-oriented authoring tool. Thus,
as also depicted in Figure 5.21, a combined approach is also possible: the model-
driven generation of a component-based Web document (arrow Nr. 3) and its further
“refinement” with an implementation-centric authoring tool (arrow Nr. 1).

4. Document Generation: While the activities mentioned above aimed at the creation
or model-driven generation of component-based Web documents, the arrow Nr. 4 depicts
the process of their publication to a specific Web output format. For this purpose
the document generation architecture presented in Section 4.5 is utilized, that acts
as a “player” of the component-based document format. The documents created (or
generated) on the higher levels serve as the input of this architecture. It automatically
generates a Web presentation from this input, based on available information on the
current user as well as his entire usage context. The resulting presentations are delivered
to the user’s browser in an appropriate Web output format, such XHTML, cHTML, or
WML.

Note that this document generation process can be also considered as a specific kind
of model-driven transformation. Starting from a platform-independent (and context-
independent) description of a Web application based on the proposed concern-oriented
component model, it generates a Web page in a platform-specific (i.e. device-specific)
Web implementation format. Thus, the overall authoring and publication framework
depicted in Figure [5.21] can be viewed as a multi-stage model-driven transformation
process between the three abstraction levels of design and modeling, component-based
implementation, and format-specific Web presentations. Yet, while the transformation
process between the Hera-AMACONT models and their component-based implementa-
tion (arrow Nr. 3) is performed only once for each application, the transformation from
this component-based implementation to a specific Web output format is executed for
each user request.

5.4.2 Realized Applications

This chapter exemplified the design and implementation process of component-based adaptive
Web presentations based on a rather small example. However, during the “evolution” of the
work presented in this thesis a number of component-based Web presentations have been
developed. They vary in size and complexity, address different application scenarios, and
support different kinds of both static and dynamic adaptation. This section provides a
representative overview of them.

Component-based MMT homepage prototype: As one of the first demonstrators se-
lected pages of the Web site of the author’s research group were realized in a device
independent component-based way. Figure [5.22| depicts two versions of the research
group’s welcome page for desktop browsers and PDAs, respectively. The demonstra-
tor provides mainly presentation adaptation based on the adjustment of the utilized
layouts. Furthermore, the inserted media elements are also adapted (regarding their

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 133

Chapter 5. The Authoring Process and its Tool Support

3 Lehrstuhl Multimediatechnik Lehre - Microsoft Internet Bip

J Datei Bearbeiten Ansicht Faworiten Extras 7

J@mruckvo. D @ {h
N_MT Suchen | Sitemap | English

=multi.medis. technik Horne - Lehre

(S ’
/f:) Suchen N Favoriten

Lehre am Lehrstuhl
Multimediatechnik

Infoermationen zu Studiengéngen
und Vertiefungsrichtungen

Ubersicht dber die Yertiefungsrichtung
tultimediatechnik
Studiengang Medieninforrmatik

Studiengang Informatik, Fachgebiet
Softwaretechnik - Ausrichtun
Wultimediatechnik

Studentische Arbeiten

Interessante neue Themen zu vergeben!

Figure 5.22: Component-based MMT homepage prototype

size, resolution, and other quality attributes) based on the capabilities of the appropri-
ate end device. The component-based MMT homepage prototype was authored with
conventional XML editors.

SoundNexus Prototype: The SoundNexus prototype is a data-driven Web presentation

providing online information on music genres, bands (performers), and their albums.
It was completely authored with the AMACONTBuilder to demonstrate its various
editor modules and its support for creating component templates [Niederhausen 2006,
Tietz 2006].

The prototype offers different kinds of content, navigation, and presentation adaptation.
As an example, the list of albums shown to the user is generated dynamically, and is
adjusted to his age, genre preferences, and personal voting. Furthermore, a TOP 10
list of the most popular albums (based on the votings of other users) is also provided.
As also depicted in Figure 5.23) the presentation of this TOP 10 list makes use of the
adaptation technique link annotation, i.e. the albums belonging to the current user’s
favorite genre are highlighted with a special icon.

Finally, the presentation of genres, bands, and albums is also adjusted to the device
capabilities of the current user, i.e. different media elements with different modality
(image vs. video) and media quality (large resolution image vs. small resolution image)
can be used, respectively. For further information on the SoundNexus prototype the
reader is referred to [Niederhausen 2006, Tietz 2006].

Model-driven Painting Gallery Prototype: This prototype demonstrates the automatic

134

generation of a component-based adaptive Web presentation based on high-level (Hera-
AMACONT based) model specifications, and is the actual implementation of the con-
cepts described in Section 5.3. The user has the possibility to choose from a number of
possible presentation model specifications and view the generated Web pages, accord-

ingly.

© Copyright TU Dresden, Zoltan Fiala

5.4. Summary and Realized Applications

) Index - Mozilla Firefox =[0f x|
Datei Bearbeiten Ansicht Gehe Lesezeichen Exras Hilfe
@ - Eb - %‘ \D @ | 0 tto:fiocahost:6080/cocoonjamacentiwebisound index.ama = 0w (o
T’ﬂ Willkommen bei Soundiexus, lhrem personlichen Musikportall Soundiexus macht es lhnen leicht, Musik zu
finden, die Sie mdgen. Geben Sie einfach nur Ihr bevorzugtes Genre ein und SoundNexus prasentiert lhnen
Interpreten und Alben, die diesemn Genre entsprechen. Auterdemn verfugt SoundNexus Gber eine tagesakiuelle
T’ﬂ Topl0-Liste aller Alben. Was fir Musik Sie auch mégen — SoundMexus kennt sie alle!
Tﬂ Interpreten Empfehlungen Top10 Alben
Herbert Grinemeyer Falling into Infinity Bleibt alles anders
=10Ix|| The Game
Disi gesbeten @ndiht Gehe Leseesichen Eatras bife Good Feeling
@-p -5 0 A " vz =] O [@ Made in Heaven

¥ Falling into Infinity

Sound“Nexus g\ux?avi;aléea]lr"fheHits

The Eminem Show
The Works

=Y Awake W Golden Age of Crotesque
T3¢ o

2
3e

«
[rerty

Figure 5.23: SoundNexus prototype

The prototype was presented in 2004 at the 4th International Conference of Web Engi-
neering (ICWE04 [Fiala et al. 2004a]) and is available online at [QICWE2004Demo].
Selected screenshots of the generated presentations were already presented in Fig-
ure [5.19 and Figure [5.20/ of this chapter.

Adaptive Web Information System for presenting student works: In order to dem-
onstrate the capabilities of the component-based document model by example of a
larger Web application, an adaptive Web information system aimed at the presentation
of students’ works at the author’s university was designed and developed [Starke 2005].
It allows students of the multimedia technology study program to upload multimedia
material created in different classes and courses (e.g. pictures, video and audio material,
flash presentations, etc.), as well as to navigate through this information in an adaptive
way.

Besides student works, the application offers information on the current and past
semesters, their courses, as well as the persons responsible for them. The applica-
tion supports for presentation layer adaptation based on its users’ end devices and
layout preferences by adjusting the the quality (e.g. different image resolutions), the
type (image vs. flash presentations), as well as the spatial arrangement of the included
media elements. Furthermore, it also adapts the structure and the interconnection of
pages based on security aspects (different versions internal vs. external visitors), the

opyright resden, Zoltan Fiala
© Copyright TU Dresden, Zoltan Fial 135

Chapter 5. The Authoring Process and its Tool Support

3 a_single_result_main - Microsoft Internet Explorer -0 x|
J Datei Bearbeiten Ansicht Favoriten Extras ¢ | 4,'
| adresse @ http:/{141.76.61 .50:8080/cocoon/amacontjweb/MIUebung result amazid=146 =] (£ wechseln zu

Lehrveranstaltung -
(Obung "wieb- und Multimedia Engineering" S306
"&1) Macromedia Flash"
Ubung "Web- und 800 Jahre Dresden - Das Puzzle
tultimedia

Engineering" SS06 leHinE

Ubung "web- und vorlesung "Web- und Multimedia Engineeringquot; entstanden ist. (2
Multimedia
Engineering" 505 Erstellte Materialien:

weitere. ..

Multimediale Medien

Ergebniskategorien

Animation [Flash /
SWG / GIF / Director]

Bildbearbeitung
Web-Anwendungen

Java-Technologien

Andere Kategorie

wieitere. .. Audio, Video, Dok i oder tige Materialien

ur Gruppe A1-07 Dokumentation {im pdf-Format)

™
Links

Ein Banner zum 800 jahrigen Bestehen von Dresden, das im Rahmen der Ubungen zur

Ergebnisse

800 Jahre Dresden -
Rudern

10 Jahre MMWT - Tic,
Too

Ihttp: /{141, 76.61.50:8080/cocoon/ ~| ¢
der

Hauptmenii | Logout
Libung “Web- und Multimedia
" SS06

"AL) Macromedda Flash™
00 Jahre Dresden - Das Puzze

T e 7

Figure 5.24: AWIS for presenting student works

visiting students’ experience (their actual semester), etc. The application was success-
fully utilized at different courses at the author’s research group. Figure [5.24 presents
two screenshots of the application, one for desktop PCs and another one for PDAs.
For more information on its design and realization the interested reader is referred

to [Starke 2005, @kpss05].

Note that all mentioned prototype applications are available at the AMACONT project’s

homepage [QAMACONT].

136

© Copyright TU Dresden, Zoltan Fiala

